§10.6 Planes

How to determine a plane in \mathbb{R}^3?

* Obvious answer: given 3 non-collinear points

* More convenient answer: given a point on the plane and a normal vector of the plane

(Here: normal vector of a plane is a vector that is orthogonal to the plane)

Problem: given $P(x_0,y_0,z_0)$ and $\vec{n} = \langle a, b, c \rangle$.

Describe the plane S containing P and orthogonal to \vec{n}.

Answer: describe random point $Q(x,y,z)$ on S.

Relation \vec{PQ} and \vec{n}?

$\vec{PQ} \perp \vec{n}$ or $\vec{PQ} \cdot \vec{n} = 0$

Vector eq: $(\vec{OQ} - \vec{OP}) \cdot \vec{n} = 0$ or $\langle x-x_0, y-y_0, z-z_0 \rangle \cdot \langle a, b, c \rangle = 0$
Equations of a plane:

- Scalar equation (also called "standard form" in the book):
 \[a(x-x_0) + b(y-y_0) + c(z-z_0) = 0 \]

- Linear equation:
 \[ax + by + cz + d = 0 \]
 where \(d = -ax_0 - by_0 - cz_0 \)

 (note: slightly differs from the textbook: \(ax + by + cz = d \) where \(d = ax_0 + by_0 + cz_0 \))

Find eq of plane through 3 points

Eq: find eq for the plane through \(P(1,3,2), Q(3,-1,6), R(5,2,0) \)
(Hint: need \(\vec{n} \). Know: \(\vec{n} \perp \) any vector formed by \(\overrightarrow{PQ}, \overrightarrow{PR} \))

Answer:
\[
\begin{align*}
\overrightarrow{PQ} &= \langle 2, -4, 4 \rangle \\
\overrightarrow{PR} &= \langle 4, -1, -2 \rangle \\
\text{then } \vec{n} &= \langle 2, -4, 4 \rangle \\
\text{Answer: } &
\end{align*}
\]

Find eq for the line that is the intersection of 2 planes
Method: pick a point \(P \) in the intersection, then

Method 1: find \(\mathbf{d} \) parallel to the intersection line

Know: \(\mathbf{d} \perp \mathbf{n}_1 \) and \(\mathbf{d} \perp \mathbf{n}_2 \) \(\Rightarrow \) choose \(\mathbf{d} = \mathbf{n}_1 \times \mathbf{n}_2 \)

Method 2: pick another point \(Q \) \(\Rightarrow \) line through \(P \) \& \(Q \)

Eq: Find symmetric eq for the intersection of the planes

\[
S_1: \quad x + y + z = 1
\]

and \(S_2: \quad x - 2y + 3z = 1 \)

Answer: pick \(P \) in the intersection, solve \(\begin{cases} x + y + z = 1 \\ x - 2y + 3z = 1 \end{cases} \)

We only need one point \(P \), set \(x = 1 \) \& solve for \((y,z)\) (you can set \(x = 100 \) \& solve for \((y,z)\) or set \(y = 0 \) \& solve for \((x,z)\), etc.)

\[
\begin{align*}
1 + y + z &= 1 \\
1 - 2y + 3z &= 1
\end{align*}
\]

\(\Rightarrow \) \(y = z = 0 \)

\(P(\quad) \)

Method 1: \(\mathbf{n}_1 = \langle \quad \rangle \), \(\mathbf{n}_2 = \langle \quad \rangle \)

\(\mathbf{d} = \)

Answer:

Method 2: pick another \(Q \): set \(x = 0 \) \& solve for \((y,z)\):

\[
\begin{align*}
y + z &= 1 \\
-2y + 3z &= 1
\end{align*}
\]

\(\Rightarrow \) \(y = 1 - z \), \(z = \quad \), \(y = \quad \)

\(Q(\quad) \)
take \(\vec{d} = \overrightarrow{PA} < \)

answer:

* Distance from a point to a plane (a distance between 2 parallel planes)

Find distance from \(C \) to the plane \(S \)

Here distance = length of \(\overrightarrow{DC} \)

\[
\overrightarrow{DC} = \text{proj}_n \overrightarrow{PC}
\]

\[
\Rightarrow \text{distance} = \text{length of } \text{proj}_n \overrightarrow{PC} = \]

(thus is Key Idea 5.1 in p.620)

A useful formula (that the book doesn't give you):

If \(S \) is given by the eq \(ax + by + cz + d = 0 \) and \(C(x_1, y_1, z_1) \) then the distance from \(C \) to \(S \) is
Eg: Given 2 planes:

\[S_1: \quad 10x + 2y - 2z = 5 \]
\[S_2: \quad 5x + y - z = 1 \]

a) Why are they parallel?
b) Distance between them?

answer: a)

b) Pick any point \(C \) on \(S_1 \), find distance from \(C \) to \(S_2 \).
To pick \(C \), need \(10x + 2y - 2z = 5 \).

* Angles: *(not in textbook, could be asked in Webwork, exam, ...)*

Rule: - use acute angles (i.e. \(\leq 90^\circ \))
 - Draw picture, use normal vectors, and see.

* Angle between 2 planes:
In these pictures, the angle between 2 planes should be θ_1.

It turns out $\theta_1 = \theta_2$.

And θ_2 is "cut out" by \vec{n}_1 and \vec{n}_2.

The angle between 2 planes is the **acute** angle formed by 2 normal vectors.

Eq: Find the angle between the planes $x + 2y + 3z = 0$ and $3x - 4y = 1$

Ans: $\vec{n}_1 = <a, b, c>$, $\vec{n}_2 = <d, e, f>$

$\theta = \text{angle between } \vec{n}_1 \text{ and } \vec{n}_2$, $\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{||n_1|| ||n_2||}$

So $\theta = \text{ }$

Warning: since we want an acute angle, the final answer is [] (which is also)
* Angle between a line & a plane

Find \(\theta_2 = \text{acute angle between L and } \vec{n} \)

answer: angle between L and S is \(\theta_1 = \frac{\pi}{2} - \theta_2 \)

Eq: find the angle between the plane \(3x - 4y = 1 \) and the line \(x - 1 = \frac{y}{2} = z \)

answer: first, find the acute angle cut out by L and \(\vec{n} = \langle 3, -4, 0 \rangle \). A vector parallel L is \(\vec{d} = \langle \ldots \rangle \)

\(\theta = \text{angle between } \vec{n} \text{ and } \vec{d} \)

\(\cos \theta = \)

the acute angle is

answer: \(\frac{\pi}{2} - \)
Cylinders and Quadric Surfaces

(Skip surfaces of revolution; Sec 10.1 in Apex book)
Sec 12.6 in Stewart

Warm-up: In \mathbb{R}^3

a) Does the eq. $x^2 + y^2 = 1$ represent a circle?

b) What is it & sketch it?

Answer:

Our goal:

- Learn how to sketch cylinders
- Sketch surfaces using traces in x, y, z
- Recall conic sections: ellipses, parabolas, hyperbolas
- Sketch & visualize ellipsoids and simple elliptic paraboloids
 such as $y = 2x^2 + z^2$, etc.