Case 2: D in type II

\[y \text{ between horizontal lines } y = c \text{ and } y = d \]
\[x \text{ between curves } x = h_1(y) \text{ and } x = h_2(y) \]

Example:

![Graph showing Case 2 and Not Type II examples](image)

Not Type II

Test: Check if any horizontal line cuts in.
Formula:
\[D = \{ (x, y) | c \leq y \leq d, \quad h_1(y) \leq x \leq h_2(y) \} \]
\[\iint_D f \, dA = \]

General method (similar to type I) when using type II:
- Sketch D, make sure type II
- Move horizontal lines
 * first to touch \(\Rightarrow c \)
 * last \(\Rightarrow d \) (usually involve points of intersection)
 * left most \(\Rightarrow h_1(y) \)
 * right most \(\Rightarrow h_2(y) \) (could happen: \(h_1 \) \& \(h_2 \) more than 1 formulas \(\Rightarrow \) need to break the integral)
Eg: (when \(g_1, g_2 \) or \(h_1, h_2 \) given by more than 1 formula)

\[
p(x)
\]

\[
Q(x)
\]

\[
a \quad b
\]

Yes: type I, write down formula for \(\iint_D f(x,y) \, dA \)?

Eg: Find \(\iint_D xy \, dA \) when \(D \) is bounded by the line

\(y = x - 1 \) & parabola \(y^2 = 2x + 6 \)

using 2 methods: (note: draw \(D \) & see \(D \) is of type I & II)

a) Regard \(D \) as type I.

b) Regard \(D \) as type II.
Solution
(continue the solution on this page)
So, remark: when \(D \) is of both type, the choice of formulas (say, do \(dy\,dx \) (type I) or \(dx\,dy \) (type II)) may simplify the problem.

Eg: \[\int_0^1 \int_x^1 \sin(y^2) \, dy\,dx = ? \]

(Hint: draw \(D \) & switch to \(dx\,dy \))
3) General case: D neither type I nor II

Property: \(D = D_1 \cup D_2 \): no overlap other than boundary

Then \(\iint_D f(x, y) \, dA = \iint_{D_1} f \, dA + \iint_{D_2} f \, dA \)

Idea: break D

How to break?

\[
\begin{array}{c}
\text{Using } \iint \text{ to calculate area:} \\
\text{Area}(D) =
\end{array}
\]

\text{Why? Isn't this supposed to be some volume!!?}