* Given $f(x,y)$: functions in 2 variables x & y

Informal rule & notation

- The partial derivative of f with respect to x:

 Notation: \(\frac{\partial f}{\partial x} \) or f_x

 Rule: regard y as constant, differentiate with respect to x

- The partial derivative of f with respect to y:

 Notation: \(\frac{\partial f}{\partial y} \) or f_y

 Rule: regard x as constant, differentiate with respect to y

Eq.1: $f(x,y)$ has a nice formula:

\[f(x,y) = xe^{xy} \]

a) In the "warm-up", we've found \(\frac{\partial f}{\partial y} \) (also written \(\frac{\partial}{\partial y}(xe^{xy}) \)) and get xe^{xy}. Now find \(\frac{\partial f}{\partial x} \) (also written \(\frac{\partial}{\partial x}(xe^{xy}) \))

b) Find $f_x(2,0)$ and $f_y(2,0)$.

Solution:
a) \(\frac{\partial f}{\partial y} = x^2 e^{xy} \). Now we find \(\frac{\partial f}{\partial x} \):
\[
\frac{\partial f}{\partial x} = \frac{3}{2} (x e^{xy}) \quad \text{product rule}
\quad e^{xy} + x \frac{\partial}{\partial x} (e^{xy})
\quad = e^{xy} + x e^{xy} \cdot y \quad \text{(there's a chain rule here)}
\quad = (1 + xy) e^{xy}
\]

b) Plug-in \((x, y) = (2, 0) \):
\[
f_x (2, 0) = (1 + 0) e^0 = 1
\]
\[
f_y (2, 0) = 4 e^0 = 4
\]

\(\text{Eq.2: without a nice formula for } f, \text{ given } (a, b) \text{ (such as } (2, 0) \text{ in previous eq)}, \text{ how to find } \frac{\partial f}{\partial x} (a, b) \text{ } \frac{\partial f}{\partial y} (a, b) \) "theoretically"?

\(\text{Answer:}\)

For \(\frac{\partial f}{\partial x} (a, b) \): set \(g(x) = f(x, b) \)
which is a function in 1 variable \(x \)

Then \(\frac{\partial f}{\partial x} (a, b) = g'(a) \)
For \(\frac{df}{dy} (a, b) \): set \(l(y) = f(a, y) \) which is a function in 1 variable \(y \)

Then \(\frac{df}{dy} (a, b) = l'(b) \)

Eg in Stewart: \(f(T, H) \) with values in Table 1 p.925 Stewart

Approximate \(\frac{df}{dT} (g_4, 60) \)

answer: set \(g(T) = f(T, 60) \). Look at the column \(H = 60 \)
get the table of values for \(g(T) \):

\[
\begin{array}{cccc}
T & 90 & 92 & 94 & 96 \\
g(T) & 100 & 105 & 111 & 116
\end{array}
\]

answer \(\frac{df}{dT} (g_4, 60) = g'(g_4) \approx \frac{g(96) - g(94)}{96 - 94} = \frac{5}{2} \)

(also OK to take \(\approx \frac{g(92) - g(94)}{92 - 94} = \frac{6}{2} \); or even OK to take the average of \(\frac{5}{2} \times \frac{6}{2} \))
Formal definition:

\[f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} \]

\[f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h} \]

Subscripts \(x, y \) & the \(x,y \) in bracket () are different notation of partial der.

\(f_x, f_y \)

Other notations (besides \(\frac{\partial f}{\partial x}, f_x, \frac{\partial f}{\partial y}, f_y \)):

\(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \) with \(z = f(x,y) \)

\(D_z f, f_1, D_z f, f_2 \)

Interpretation of partial derivatives:

- As rate of change: \(z = f(x,y) \)
 \(\frac{\partial f}{\partial x}(a,b) \): rate of change of \(z \) in \(x \) at \((a,b) \) when we fix \(y = b \) (or when moving along the trace/cross section in \(y = b \))
 \(\frac{\partial f}{\partial y}(a,b) \): similar

- As slopes of tangents of traces in \(x \) & traces in \(y \) (see p.928 Stewart)

Eg: Eg 406 p.695 APEX: explain this eg in the lecture

(Blue curve in Figure 12.12(a) is the trace/cross section in \(y = 1 \))
(Blue curve in Figure 12.12(b) is the trace/cross section in \(x = 2 \))
Geometric meaning of \(\frac{\partial f}{\partial x} (a, b) \) and \(\frac{\partial f}{\partial y} (a, b) \):

- Graph of \(f(x, y) \Rightarrow \text{surface } z = f(x, y) \)
- For \(\frac{\partial f}{\partial x} (a, b) \Rightarrow \text{fix } y = b \), look at the curve \(z = f(x, b) \)
 (-this curve is just the trace at \(y = b \))

\[
\text{graph } z = f(x, y) \\
\text{zoom} \\
\text{tangent}
\]

\[
\frac{\partial f}{\partial x} (a, b) = \frac{\partial z}{\partial x} (a, b) = \text{slope of the tangent of the curve } \text{where } x = a
\]

Similarly: for \(\frac{\partial f}{\partial y} (a, b) \Rightarrow \text{fix } x = a \Rightarrow \text{trace at } x = a \)
which is the curve \(z = f(a, y) \)

\[
\frac{\partial f}{\partial y} (a, b) = \frac{\partial z}{\partial y} (a, b) = \text{slope of the tangent when } y = b
\]
Eg: (compare eq 2 in p.928 of Stewart)

For the graph of \(f(x,y) = 4 - x^2 - y^2 \), find parametric equation for the tangent of the trace in \(y = 1 \) at the point \(P(1,1,2) \):

\[P(1,1,2) \]

\[(a,b) = (1,1) \]

\[z = f(a,b) = f(1,1) = 2 \]

Answer:

The graph is the surface \(z = f(x,y) = 4 - x^2 - y^2 \) \(\left(\frac{df}{dx} = -2x \right) \)

Trace in \(y = 1 \) is the curve \(z = f(x,1) \)

Slope of the tangent line to this curve at \(P(1,1,2) \) is

\[\frac{df}{dx} \bigg|_{(1,1)} = -2 \]

Parametric eq

\[\begin{cases} x = 1 + t \\ y = 1 \\ z = 2 - 2t \end{cases} \]

(eq: \(\begin{cases} x - 1 = \frac{z - 2}{-2} \\ y = 1 \end{cases} \)

Why? Should have \(\begin{cases} x = 1 + at \\ y = 1 \\ z = 1 + ct \end{cases} \)

Your trace and tangent are in the plane \(y = 1 \)

Any \(a \times c \) with \(\frac{c}{a} = -2 \) is OK since \(\frac{c}{a} \) is the slope of the tangent of the trace \(z = f(x,1) \). Why \(\frac{c}{a} \) is slope?

from \(\frac{x - 1}{a} = \frac{z - 2}{c} \) \(\Rightarrow \) \(z = \left(\frac{c}{a} \right) x + \text{something} \)
Eq: Suppose \(x \) & \(y \) are variables and \(z \) is a function (implicitly) defined in \(x \) \& \(y \).

Find \(\frac{\partial}{\partial x} (xz + y\cos z) \)

Solution:

\[
\frac{\partial}{\partial x} (xz) + y \frac{\partial}{\partial x} (\cos z) = z + x \frac{\partial z}{\partial x} + y (-\sin z) \frac{\partial z}{\partial x}
\]

\[= z + (x - y\sin z) \frac{\partial z}{\partial x}\]

Eq (page 929 Stewart) \(z \) is defined implicitly in \(x \) \& \(y \) such that \(x^3 + y^3 + z^3 + 6xyz = 1 \)

Find \(\frac{\partial z}{\partial x} \) \& \(\frac{\partial z}{\partial y} \)

Solution: (this is exactly in p.929 Stewart). I'll find \(\frac{\partial z}{\partial x} \) here, it's similar for \(\frac{\partial z}{\partial y} \):

Start with \(x^3 + y^3 + z^3 + 6xyz = 1 \)

To make \(\frac{\partial z}{\partial x} \) appear, take \(\frac{\partial}{\partial x} \) both sides, get:

\[
3x^2 + 3z^2 \frac{\partial z}{\partial x} + 6y (\frac{\partial}{\partial x} (xz)) = 0
\]

\[
3x^2 + 3z^2 \frac{\partial z}{\partial x} + 6y (z + x \frac{\partial z}{\partial x}) = 0
\]

\[
3x^2 + 3z^2 \frac{\partial z}{\partial x} + 6yz + 6xy \frac{\partial z}{\partial x} = 0
\]

\[
(3z^2 + 6xy) \frac{\partial z}{\partial x} = -3x^2 - 6yz
\]

\[
\frac{\partial z}{\partial x} = \frac{-x^2 - 6yz}{3z^2 + 6xy}
\]
Functions of 3 or more variables:

- Similar def: regard all other vars as constant, differentiate with respect to one variable.

- Do not confuse with implicit differentiation:

Here \(f(x, y, z) \), \(\frac{\partial f}{\partial x} \), \(\frac{\partial f}{\partial y} \), \(\frac{\partial f}{\partial z} \): \(x, y, z \) have "equal status" as independent variables of \(f \),

previously in previous implicit diff: \(x \) & \(y \) are variables of \(z \)

so \(z \) depends on \(x \) and \(y \).

Eq: \(f(x, y, z) = xz + y\cos z \)

Find \(\frac{\partial}{\partial x} (xz + y\cos z) \), \(f_y \), \(\frac{\partial f}{\partial z} \) ?

Answer: (you should see why this is different from the previous page)

\[\frac{\partial}{\partial x} (xz + y\cos z) = z + 0 = z \]

\[f_y = \frac{\partial}{\partial y} (xz + y\cos z) = 0 + \cos z = \cos z \]

\[\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} (xz + y\cos z) = x - y\sin z \]