1. Problems

Problem 1. Let \(f : \mathbb{N} \rightarrow \mathbb{C} \) be a multiplicative function. Prove that the function \(F : \mathbb{N} \rightarrow \mathbb{C} \) defined by
\[
F(n) = \sum_{d|n} f(d)
\]
for each \(n \in \mathbb{N} \) is also a multiplicative function.

Problem 2. For each \(n \in \mathbb{N} \), let \(\sigma(n) \) be the sum of all positive divisors of \(n \).

(i) Prove that \(\sigma : \mathbb{N} \rightarrow \mathbb{N} \) is a multiplicative function.

(ii) Prove that for each prime number \(p \) and for each \(\alpha \in \mathbb{N} \),
\[
\sigma(p^\alpha) = \frac{p^{\alpha+1} - 1}{p - 1} - 1.
\]

(iii) Prove that if \(\prod_{i=1}^r p_i^{\alpha_i} \) is the factorization of \(n \) into a product of powers of primes, then
\[
\sigma(n) = \prod_{i=1}^r \frac{p_i^{\alpha_i+1} - 1}{p_i - 1}.
\]

Problem 3. If \(n \in \mathbb{N} \) has the property that \(\sigma(n) = 2n \), then \(n \) is called a perfect number. Prove that if \(k \in \mathbb{N} \) has the property that \(2^{k+1} - 1 \) is a prime number, then \(n = 2^k \cdot (2^{k+1} - 1) \) is a perfect number.

Problem 4. If \(n \in \mathbb{N} \) is an even perfect number, then there exists \(k \in \mathbb{N} \) such that \((2^{k+1} - 1) \) is a prime number, and
\[
n = 2^k \cdot (2^{k+1} - 1).
\]

Problem 5. Let \(p \) and \(q \) be two distinct odd prime numbers, and let \(a, b \in \mathbb{N} \). Show that \(p^aq^b \) is not a perfect number.

Problem 6. Let \(k \in \mathbb{N} \), let \(a_0, a_1, \ldots, a_k \in \mathbb{R} \) with \(a_k \neq 0 \). If \(f : \mathbb{N} \rightarrow \mathbb{R} \) given by
\[
 f(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0
\]
is a multiplicative function, show that \(a_k = 1 \), and that \(a_i = 0 \) for \(0 \leq i < k \).

Problem 7. Show that \(\sigma(mn) < \sigma(m) \cdot \sigma(n) \) for all positive integers \(m \) and \(n \) which are not relatively prime.

Problem 8. Show that there is no perfect number \(n \) which is of the form \(pqr \), where \(p, q \) and \(r \) are distinct prime numbers.
Problem 9. Prove that for each \(n \in \mathbb{N} \), we have
\[
\sum_{d \mid n} \phi(d) = n.
\]

Problem 10.
(i) Prove that there are infinitely many prime numbers of the form \(3n + 1 \), with \(n \in \mathbb{N} \).
(ii) Prove that there are infinitely many prime numbers of the form \(3n + 2 \), with \(n \in \mathbb{N} \).

Problem 11. For each positive integer \(n \), let \(\omega(n) \) be the number of distinct prime factors of \(n \). We define the Möbius function \(\mu : \mathbb{N} \rightarrow \mathbb{Z} \) by
\[
\mu(n) = \begin{cases}
(-1)^{\omega(n)} & \text{if } n \text{ is square-free} \\
0 & \text{otherwise}
\end{cases}
\]
for each \(n \in \mathbb{N} \). Prove that \(\mu \) is a multiplicative function and that for each \(n \in \mathbb{N} \),
\[
\sum_{d \mid n} \mu(d) = \begin{cases}
1 & \text{if } n = 1 \\
0 & \text{if } n > 1
\end{cases}.
\]

Problem 12. Let \(f : \mathbb{N} \rightarrow \mathbb{C} \) and \(F : \mathbb{N} \rightarrow \mathbb{C} \).
(i) Prove that if for each \(n \in \mathbb{N} \),
\[
F(n) = \sum_{d \mid n} f(d),
\]
then for each \(n \in \mathbb{N} \), we have
\[
f(n) = \sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right).
\]
(ii) Prove that if for each \(n \in \mathbb{N} \),
\[
f(n) = \sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right),
\]
then for each \(n \in \mathbb{N} \), we have
\[
F(n) = \sum_{d \mid n} f(d).
\]

Problem 13. Let \(f : \mathbb{N} \rightarrow \mathbb{C} \), and let \(F : \mathbb{N} \rightarrow \mathbb{C} \) such that
\[
F(n) = \sum_{d \mid n} f(d),
\]
for each \(n \in \mathbb{N} \). Prove that if \(F \) is multiplicative, then \(f \) is multiplicative.

Problem 14. Let \(m > 1 \) be an odd integer, and let \(a \in \mathbb{Z} \) such that \(\gcd(a, m) = 1 \). Show that the number of solutions to the congruence equation \(x^2 \equiv a \pmod{m} \) is
\[
\prod_{\substack{p \mid m \\text{prime}}} \left(1 + \left(\frac{a}{p}\right) \right).
\]
Problem 15.

(i) Let \(p \) be an odd prime number, and assume there exists \(x \in \mathbb{Z} \) such that \(p \mid (x^4 + 1) \). Prove that \(p \equiv 1 \pmod{8} \).

(ii) Prove that there exist infinitely many prime numbers \(p \) such that \(p \equiv 1 \pmod{8} \).

Problem 16. Let \(p \) be a prime number and let \(a, b, c \in \mathbb{N} \) such that

\[
ab^2 \equiv c^2 \pmod{p}.
\]

Show that if \(\left(\frac{a}{p} \right) = -1 \), then

\[
b^2 \equiv c^2 \pmod{p^2}.
\]

Problem 17. For any positive integer \(n \) prove that \(\phi(n) + \sigma(n) \geq 2n \), with equality if and only if \(n = 1 \) or \(n \) is a prime.

Problem 18. If \(a \) and \(b \) are positive integers such that \(a \mid b \) then prove that

\[
2^a - 1 \mid 2^b - 1.
\]

Problem 19. Let \(p \) be a prime number satisfying \(p \equiv 3 \pmod{4} \). Prove that for each \(a \in \mathbb{Z} \), there exist \(x, y \in \mathbb{Z} \) such that \(x^4 + y^4 \equiv a \pmod{p} \).

Problem 20. Let \(a_0, a_1, \ldots, a_n \in \mathbb{Z} \) such that \(|a_0| \) is a prime number, and \(|a_0| > |a_1| + \cdots + |a_n| \). Prove that

\[
a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0
\]

is irreducible, i.e. there exist no nonconstant polynomials \(g, h \in \mathbb{Z}[x] \) such that \(f = g \cdot h \).

Problem 21. Let \(n \) be a positive integer. Show that \(2^n + 1 \) has no prime factor \(p \) satisfying \(p \equiv 7 \pmod{8} \).

Problem 22. Let \(P \in \mathbb{Z}[x] \) be a polynomial of degree \(n > 1 \). Let \(r \in \mathbb{N} \) and \(x_0, a_1, a_2, \ldots, a_r \in \mathbb{Z} \) such that for each \(i = 1, \ldots, r \) we have \(P(a_i) = x_0 + i \). Find with proof the largest value of \(r \).
2. Solutions

Problem 1. We start with the following easy lemma.

Lemma 2.1. If \(m, n \in \mathbb{N} \) such that \(\gcd(m, n) = 1 \), then each positive divisor \(d \) of \(mn \) can be uniquely written as \(d_1 \cdot d_2 \), where \(d_1 \mid m \) and \(d_2 \mid n \).

Proof. Indeed, we let \(d_1 = \gcd(d, m) \) and \(d_2 = \gcd(d, n) \). Since \(\gcd(m, n) = 1 \) we get that \(\gcd(d_1, d_2) = 1 \). Because both \(d_1 \mid d \) and \(d_2 \mid d \), we obtain that \((d_1 \cdot d_2) \mid d \).

Now, since \(d \mid m \cdot n \), and \(d_2 \mid d \) and also \(d_2 \mid n \), we get that

\[
\frac{d}{d_2} \mid m \cdot \frac{n}{d_2}.
\]

Moreover, \(\gcd\left(\frac{d}{d_2}, \frac{n}{d_2}\right) = 1 \), which yields that

\[
\frac{d}{d_2} \mid m.
\]

Since \(d_1 \mid \frac{d}{d_2} \) and also \(d_1 \mid n \), we get that

\[
(1) \quad \frac{d}{d_1d_2} \mid \frac{m}{d_1}.
\]

Because \(\gcd(d, m) = d_1 \) we get that \(\gcd\left(\frac{d}{d_1}, \frac{m}{d_1}\right) = 1 \) and thus also

\[
(2) \quad \left(\frac{d}{d_1d_2}, \frac{m}{d_1}\right) = 1.
\]

Using (1) and (2) we conclude that

\[
\frac{d}{d_1d_2} = 1,
\]

as desired for this lemma.

As for the uniqueness part, if \(d = d_3d_4 \) where \(d_3 \mid m \) and \(d_4 \mid n \), then we would get that \(d_3 \mid d_1 = \gcd(d, m) \) and also \(d_4 \mid d_2 = \gcd(d, n) \). Therefore, using that \(d_3d_4 = d_1d_2 \) we would get that indeed \(d_3 = d_1 \) and \(d_4 = d_2 \). \(\square \)

Let \(m, n \in \mathbb{N} \) such that \(\gcd(m, n) = 1 \). Using Lemma 2.1 for each divisor \(d \) of \(mn \), there exist unique divisors \(d_1 \) of \(m \) and respectively \(d_2 \) of \(n \) such that \(d = d_1d_2 \). Conversely, if \(d_1 \) is a divisor of \(m \), and \(d_2 \) is a divisor of \(n \), then clearly \(d_1d_2 \) is a
The divisor of \(mn \). So, using also the fact that \(f \) is multiplicative, we have

\[
F(mn) = \sum_{d|mn} f(d)
\]

\[
= \sum_{d_1|m, \ d_2|n} f(d_1d_2)
\]

\[
= \sum_{d_1|m} \sum_{d_2|n} f(d_1)f(d_2)
\]

\[
= \left(\sum_{d_1|m} f(d_1) \right) \cdot \left(\sum_{d_2|n} f(d_2) \right)
\]

\[
= F(m)F(n),
\]

as desired.

Problem 2.

(i) We know that \(\sigma(n) = \sum_{d|n} d \), and because the function \(f : \mathbb{N} \to \mathbb{N} \) given by \(f(n) = n \) is multiplicative, the conclusion of **Problem 1** yields that also \(\sigma \) is a multiplicative function.

(ii) We compute easily

\[
\sigma(p^\alpha)
= 1 + p + \cdots + p^\alpha
= \frac{p^{\alpha+1} - 1}{p - 1}.
\]

(iii) Using parts (i) and (ii) above, the conclusion is immediate.

Problem 3. Assuming that \((2^{k+1} - 1) \) is a prime number, and using the formula for \(\sigma(n) \) (as in **Problem 2**) we conclude that

\[
\sigma(n) = \sigma(2^k) \cdot \sigma(2^{k+1} - 1) = (2^{k+1} - 1) \cdot 2^k
\]

Therefore \(n \) is a perfect number.

Problem 4. Since \(n \) is even, there exists \(k \in \mathbb{N} \) such that \(n = 2^k \cdot m \), where \(m \) is an odd positive integer. Assuming that \(n \) is perfect we get that

\[
2^{k+1}m = 2n = \sigma(n) = \sigma(2^k) \cdot \sigma(m) = (2^{k+1} - 1) \cdot \sigma(m).
\]

Since \(\gcd(2^{k+1}, 2^{k+1} - 1) = 1 \), we get that \((2^{k+1} - 1) \mid m \), i.e., there exists \(m_1 \in \mathbb{N} \) such that

\[
m = m_1 \cdot (2^{k+1} - 1).
\]

We prove first that \(m_1 = 1 \). Indeed, otherwise (if \(m_1 > 1 \)) we would have that

\[
\sigma(m) \geq 1 + m_1 + (2^{k+1} - 1)m_1 \geq 2^{k+1}m_1.
\]

So, in this case we could not get the equality above: \(2^{k+1}m = (2^{k+1} - 1)\sigma(m) \). Hence, indeed \(m_1 = 1 \).
Next we prove that \(m = 2^{k+1} - 1 \) must be a prime number. Indeed, otherwise there exists a divisor \(d \) of \((2^{k+1} - 1)\) other than 1 and itself. Thus \(\sigma(m) = \sigma(2^{k+1} - 1) \geq 1 + d + 2^{k+1} - 1 > 2^{k+1} \). This last inequality again would contradict the fact that \(2^{k+1}m = (2^{k+1} - 1)\sigma(m) \). Hence, indeed \((2^{k+1} - 1)\) is a prime number, as desired.

Problem 5. Assume that \(\sigma(p^aq^b) = 2p^aq^b \); then
\[
\sum_{0 \leq i \leq a, 0 \leq j \leq b} p^i q^j = 2p^aq^b.
\]
This yields
\[
\sum_{0 \leq i \leq a, 0 \leq j \leq b} p^{i-a} q^{j-b} = 2,
\]
or equivalently
\[
2 = \sum_{0 \leq i \leq a, 0 \leq j \leq b} p^{-i} q^{-j} < \sum_{i \geq 0, j \geq 0} p^{-i} q^{-j} = \left(\sum_{i \geq 0} p^{-i} \right) \cdot \left(\sum_{j \geq 0} q^{-j} \right) = \frac{p}{p-1} \cdot \frac{q}{q-1}.
\]
But we know that \(p \) and \(q \) are distinct odd prime numbers which yields a contradiction:
\[
2 < \left(1 + \frac{1}{p-1} \right) \cdot \left(1 + \frac{1}{q-1} \right) \leq \left(1 + \frac{1}{3-1} \right) \cdot \left(1 + \frac{1}{5-1} \right) < 2.
\]
Therefore \(p^aq^b \) is never a perfect number.

Problem 6. Since \(\gcd(n, n+1) = 1 \) for all \(n \in \mathbb{N} \) we conclude that \(f(n^2 + n) = f(n)f(n + 1) \).

It is immediate to see that
\[
\lim_{n \to \infty} \frac{f(n)}{n^k} = a_k.
\]
So,
\[
a_k = \lim_{n \to \infty} \frac{f(n^2 + n)}{(n^2 + n)^k} = \lim_{n \to \infty} \frac{f(n+1)}{(n+1)^k} \cdot \lim_{n \to \infty} \frac{f(n)}{n^k} = a_k \cdot a_k.
\]
Therefore, since \(a_k \neq 0 \), we conclude that \(a_k = 1 \).

Assume now that not all \(a_i \) are 0, for \(i < k \); so let \(\ell \) be the largest index \(i < k \) such that \(a_i \neq 0 \). Then

\[
\lim_{n \to \infty} \frac{f(n) - n^k}{n^\ell} = a_\ell.
\]

So,

\[
0 = \lim_{n \to \infty} \frac{f(n)^{k\ell}}{n^{k\ell}} = \lim_{n \to \infty} \frac{f(n) - n^k}{n^\ell} = \lim_{n \to \infty} \frac{f(n)(n+1)^{k\ell} - n^{k(1+k)\ell}}{(n+1)^{k\ell} - n^{k\ell}}.
\]

Therefore \(a_\ell = 0 \) which contradicts our assumption that \(a_\ell \neq 0 \). Therefore indeed \(a_i = 0 \) for each \(i < k \), as desired.

Problem 7. Let \(p_1, \ldots, p_k \) be all the distinct prime numbers dividing \(\gcd(m, n) \) (since \(m \) and \(n \) are not relatively prime, we know that \(k \geq 1 \)).

We let \(\alpha_i = \exp_{p_i}(m) \) and \(\beta_i = \exp_{p_i}(n) \). Also, we let

\[
m_1 = \frac{m}{\prod_{i=1}^{k} p_i^{\alpha_i}}, \quad n_1 = \frac{n}{\prod_{i=1}^{k} p_i^{\beta_i}}.
\]

Because the \(p_i \)'s are all the prime factors of \(\gcd(m, n) \) we conclude that \(\gcd(m_1, n_1) = 1 \). Also, by the choice of \(\alpha_i \) and \(\beta_i \) we get that no \(p_i \) divides \(m_1 n_1 \); i.e.,

\[
\gcd\left(m_1, \prod_{i=1}^{k} p_i^{\alpha_i} \right) = \gcd\left(n_1, \prod_{i=1}^{k} p_i^{\beta_i} \right) = 1.
\]

So, we compute:

\[
\sigma(m) = \sigma(m_1) \cdot \prod_{i=1}^{k} \frac{p_i^{\alpha_i+1} - 1}{p_i - 1},
\]

\[
\sigma(n) = \sigma(n_1) \cdot \prod_{i=1}^{k} \frac{p_i^{\beta_i+1} - 1}{p_i - 1},
\]

\[
\sigma(mn) = \sigma(m_1)\sigma(n_1) \cdot \prod_{i=1}^{k} \frac{p_i^{\alpha_i+\beta_i+1} - 1}{p_i - 1}.
\]

In order to prove that \(\sigma(mn) < \sigma(m) \cdot \sigma(n) \), it suffices to prove that for each prime number \(p \) and for each \(\alpha, \beta \in \mathbb{N} \), we have

\[
\frac{p^{\alpha+\beta+1} - 1}{p - 1} < \frac{p^{\alpha+1} - 1}{p - 1} \cdot \frac{p^{\beta+1} - 1}{p - 1}.
\]
This last inequality is equivalent with showing that
\[(p^{\alpha+\beta+1} - 1)(p - 1) < (p^{\alpha+1} - 1)(p^{\beta+1} - 1).\]
A simple computation yields that we need to show that
\[p^{\alpha+1} + p^{\beta+1} < p^{\alpha+\beta+1} + p.\]
But
\[p^{\alpha+\beta+1} + p - p^{\alpha+1} - p^{\beta+1} = p(p^\alpha - 1)(p^\beta - 1) > 0,\]
since \(\alpha, \beta > 0\). This concludes our proof.

Problem 8. We know that \(\sigma(n) = (p+1)(q+1)(r+1)\). So, if all three prime numbers \(p, q\) and \(r\) are odd, then \(\exp_2(\sigma(n)) \geq 3\). On the other hand, if we assume that \(\sigma(n) = 2n\), then
\[\exp_2(\sigma(n)) = \exp_2(2pqr) = 1,\]
which is then a contradiction. So, one of the prime numbers \(p, q\) or \(r\) equals 2. Without loss of generality we assume \(r = 2\), and thus
\[\sigma(n) = 3(p+1)(q+1) = 3pq + 3p + 3q + 3.\]
So, if \(\sigma(n) = 2n = 4pq\), we get that
\[pq - 3p - 3q - 3 = 0,\]
and so,
\[(p - 3)(q - 3) = 12.\]
Hence \(p, q \in \{4, 5, 6, 7, 9, 15\}\). Hence \(p\) and \(q\) must be 5 and 7; however,
\[(5 - 3)(7 - 3) \neq 12.\]
Therefore there exist no distinct prime numbers \(p, q\) and \(r\) such that
\[\sigma(pqr) = 2pqr.\]

Problem 9. We know that \(\phi\) is a multiplicative function and then by the conclusion of Problem 1, we know that also the function \(F : \mathbb{N} \rightarrow \mathbb{N}\) defined by
\[F(n) = \sum_{d|n} \phi(d)\]
is also a multiplicative function. Therefore, in order to find out \(F\), all we need to compute is \(F(p^\alpha)\) for primes \(p\), and for \(\alpha \in \mathbb{N}\). Now, we know that for each \(\beta \in \mathbb{N}\),
\[\phi(p^\beta) = p^\beta - p^{\beta-1}.\]
So,

\[F(p^\alpha) = \sum_{d|p^\alpha} \phi(d) \]

\[= \phi(1) + \sum_{\beta=1}^{\alpha} \phi(p^\beta) \]

\[= 1 + \sum_{\beta=1}^{\alpha} (p^\beta - p^{\beta-1}) \]

\[= p^\alpha. \]

Therefore, for each \(n \in \mathbb{N} \), if \(n = 1 \), clearly \(F(1) = 1 \), while if \(n > 1 \), we let

\[\prod_{i=1}^{r} p_i^{\alpha_i} \]

be the factorization of \(n \) into a product of powers of primes. Then, using the fact that \(F \) is multiplicative we find that

\[F(n) = \prod_{i=1}^{r} F(p_i^{\alpha_i}) = \prod_{i=1}^{r} p_i^{\alpha_i} = n, \]

as desired.

Problem 10.

(i) We start with the following claim.

Claim 2.2. If \(x \in \mathbb{Z} \) and if \(p > 3 \) is a prime number such that \(p \mid (x^2 + x + 1) \), then \(p \equiv 1 \pmod{3} \).

Proof. Since \(p \mid (x^2 + x + 1) \), then also \(p \mid (x^3 - 1) \) (because \(x^3 - 1 = (x - 1)(x^2 + x + 1) \)). Therefore the order of \(x \) modulo \(p \) divides 3. There are two cases.

Case 1. the order of \(x \) modulo \(p \) is 1

Then \(p \mid (x - 1) \), and since

\[x^2 + x + 1 = (x - 1)^2 + 3(x - 1) + 3, \]

we get that \(p \mid 3 \). This is impossible since \(p > 3 \) by our assumption.

Case 2. the order of \(x \) modulo \(p \) is 3

Then \(3 \mid (p - 1) \) because always the order of \(x \) modulo \(p \) divides \(p - 1 \).

This concludes the proof of our Claim. \(\Box \)

Now, assume there exist only finitely many prime numbers of the form \(3n + 1 \) (note that 7 is one of them, for example). We label then these finitely many primes as: \(p_1, \ldots, p_\ell \). We let

\[x = 3 \cdot \prod_{i=1}^{\ell} p_i. \]
Clearly, $x \geq 21$ and thus $x^2 + x + 1 > 1$ (which yields that $x^2 + x + 1$ is divisible by at least one prime number p). On the other hand, because $3 \mid x$, then
\[x^2 + x + 1 \equiv 1 \pmod{3}. \]
So, by Claim 2.2, $x^2 + x + 1$ is divisible only by primes which are congruent with 1 modulo 3. However, for each $i = 1, \ldots, \ell$, we have
\[x^2 + x + 1 \equiv 1 \pmod{p_i}, \]
which means that $x^2 + x + 1$ cannot be divisible by any prime number p_i. This provides a contradiction to our assumption that the p_i’s are all the prime numbers congruent with 1 modulo 3; we just saw that $x^2 + x + 1$ must be divisible by another prime number of the form $3n + 1$ which is not from the list p_1, \ldots, p_ℓ. So, there exist infinitely many prime numbers of the form $3n + 1$.

(ii) Assume there exist only finitely many primes of the form $3n + 2$; let q_1, \ldots, q_k be all these such primes (note that the first such prime is $q_1 = 2$ and $q_2 = 5$). We let
\[N = -1 + 3 \cdot \prod_{j=1}^{k} q_j. \]
Then $N > 1$ is a number of the form $3n + 2$ itself. So, it must be divisible by a prime number p which is of the form $3n + 2$. Indeed, otherwise all its prime factors would be of the form $3n + 1$ and since product of two numbers which are congruent with 1 modulo 3 is also a number congruent with 1 modulo 3 we would obtain that N is congruent with 1 modulo 3, which would be a contradiction.

Now we claim that the above prime number p which divides N and which is of the form $3n + 2$ is not from the list: q_1, \ldots, q_k. Indeed, if $p = q_j$, say, then because
\[q_j \nmid 3 \cdot q_1 \cdots q_k, \]
we would obtain that $q_j \mid 1$, which is a contradiction. So, $p \equiv 2 \pmod{3}$, but $p \neq q_j$ for $j = 1, \ldots, k$; this provides a contradiction with our assumption that the list: q_1, \ldots, q_k contains all prime numbers of the form $3n + 2$.

In conclusion there exist infinitely many prime numbers of the form $3n + 2$.

Problem 11. Since 1 is divisible by no prime factor, we have $\omega(1) = 0$ and thus $\mu(1) = 1$. Also, in general, if p_1, \ldots, p_r are distinct prime factors, we have
\[\mu(p_1 \cdots p_r) = (-1)^r, \]
while if there exists $m > 1$ such that $m^2 \mid n$, then $\mu(n) = 0$. Hence, if $\gcd(n_1, n_2) = 1$, we have two cases.

Case 1. both n_1 and n_2 are square-free
In this case $\mu(n_i) = (-1)^{\omega(n_i)}$ for $i = 1, 2$. Moreover, n_1n_2 is also square-free and $\omega(n_1n_2) = \omega(n_1) + \omega(n_2)$ because $\gcd(n_1, n_2) = 1$. Thus
\[\mu(n_1n_2) = (-1)^{\omega(n_1n_2)} = (-1)^{\omega(n_1)+\omega(n_2)} = \mu(n_1) \cdot \mu(n_2). \]

Case 2. at least one of the two numbers n_1 or n_2 is not square-free
In this case also \(n_1n_2 \) is not square-free, and therefore
\[
\mu(n_1n_2) = 0 = \mu(n_1) \cdot \mu(n_2).
\]

Therefore in the above two cases we proved that \(\mu \) is a multiplicative function. Using Problem 1 we conclude that also the function \(F : \mathbb{N} \rightarrow \mathbb{Z} \) defined by
\[
F(n) = \sum_{d|n} \mu(d)
\]
is a multiplicative function. Therefore in order to compute \(F \) all we need to do is find out \(F(p^\alpha) \) for each prime number \(p \) and for each \(\alpha \in \mathbb{N} \) (clearly, \(F(1) = \mu(1) = 1 \)). So,
\[
F(p^\alpha) = \mu(1) + \mu(p) + \sum_{\beta=2}^\alpha \mu(p^\beta) = 1 + (-1) + 0 = 0.
\]
Hence, for each \(n \in \mathbb{N} \) larger than 1, we let \(n = \prod_{i=1}^r p_i^{\alpha_i} \) be its factorization into a product of powers of primes and so, using that \(F \) is multiplicative, we have:
\[
F(n) = \prod_{i=1}^r F(p_i^{\alpha_i}) = 0.
\]

Problem 12.

(i) For each \(n \in \mathbb{N} \) we compute
\[
\sum_{d|n} \mu(d)F\left(\frac{n}{d}\right)
\]
\[
= \sum_{d|n} \mu(d) \sum_{e|\frac{n}{d}} f(e)
\]
\[
= \sum_{e|n} f(e) \cdot \sum_{d|\frac{n}{e}} \mu(d)
\]
\[
= f(n),
\]
since for each \(e \mid n \) but \(e \neq n \), the integer number \(\frac{n}{e} \) is larger than 1 and then
\[
\sum_{d|\frac{n}{e}} \mu(d) = 0,
\]
according to Problem 11.

(ii) For each \(n \in \mathbb{N} \) we compute
\[
\sum_{d|n} f(d)
\]
\[
= \sum_{d|n} \sum_{e|d} \mu(e)F\left(\frac{d}{e}\right)
\]
\[
= \sum_{d_1|n} F(d_1) \cdot \sum_{e|\frac{n}{d_1}} \mu(e)
\]
\[
= F(n),
\]
since for each \(d_1 \mid n \) but \(d_1 \neq n \), the integer number \(\frac{n}{d_1} \) is larger than 1 and then

\[
\sum_{e \mid \frac{n}{d_1}} \mu(e) = 0,
\]

according to Problem 11.

Problem 13. According to Problem 13 (i), we have

\[
f(n) = \sum_{d \mid n} \mu(d)F \left(\frac{n}{d} \right).
\]

Let now \(m,n \in \mathbb{N} \) such that \(\gcd(m,n) = 1 \). Using Lemma 2.1 and also the fact that \(\mu \) and \(F \) are multiplicative functions, we compute

\[
f(mn) = \sum_{d \mid mn} \mu(d)F \left(\frac{mn}{d} \right)
\]

\[
= \sum_{d_1 \mid m, d_2 \mid n} \mu(d_1d_2)F \left(\frac{mn}{d_1d_2} \right)
\]

\[
= \sum_{d_1 \mid m, d_2 \mid n} \mu(d_1)\mu(d_2)F \left(\frac{m}{d_1} \right)F \left(\frac{n}{d_2} \right)
\]

\[
= \left(\sum_{d_1 \mid m} \mu(d_1)F \left(\frac{m}{d_1} \right) \right) \cdot \left(\sum_{d_2 \mid n} \mu(d_2)F \left(\frac{n}{d_2} \right) \right)
\]

\[
= f(m) \cdot f(n).
\]

This proves that \(f \) is indeed a multiplicative function.

Problem 14. Let

\[
m = \prod_{i=1}^{r} p_i^{a_i}
\]

be the factorization of \(m \) into a product of powers of primes. Note that each \(p_i \) is odd since \(m \) is odd.

Using the Chinese Remainder Theorem, we get that the number of solutions to the congruence equation

\[
x^2 \equiv a \pmod{m}
\]

is \(\prod_{i=1}^{r} N_i \), where for each \(i = 1, \ldots, r \), \(N_i \) is the number of solutions to the congruence equation

\[
x^2 \equiv a \pmod{p_i^{a_i}}.
\]

So, we are done if we can prove that for each odd prime number \(p \) which does not divide \(a \) (note that \(\gcd(a,m) = 1 \)), and for each \(\alpha \in \mathbb{N} \), the number of solutions to the congruence equation

\[
x^2 \equiv a \pmod{p^\alpha}
\]

equals \(1 + \left(\frac{a}{p} \right) \).
Case 1. \(\left(\frac{a}{p} \right) = -1 \)
In this case, \(a \) is not a quadratic residue modulo \(p \) and therefore there exists no \(x \in \mathbb{Z} \) such that \(x^2 \equiv a \pmod{p} \). In particular, for each \(\alpha \in \mathbb{N} \), there is no solution to the congruence equation (3).

Case 2. \(\left(\frac{a}{p} \right) = 1 \)
In this case we immediately get that the congruence equation

\[
x^2 \equiv a \pmod{p}
\]

has exactly two solutions \(x_1 \) and \(x_2 \). We claim that each solution \(x_1 \) and \(x_2 \) has a unique lifting to a solution of the congruence equation (3). Indeed, for this it suffices to show that for each \(\alpha \in \mathbb{N} \) if \(x_\alpha \) is a solution for the congruence equation

\[
x^2 \equiv a \pmod{p^\alpha}
\]

then there exists a unique lifting \(x_{\alpha+1} \) which is a solution for the congruence equation

\[
x^2 \equiv a \pmod{p^{\alpha+1}}.
\]

This statement follows by Hensel’s Lemma once we observe that the derivative of \(x^2 \) is \(2x \) and thus its value at \(x = x_\alpha \) is relative prime with \(p \) because \(x_\alpha \) is not divisible by \(p \) (note that \(a \) is not divisible by \(p \) and \(x_\alpha^2 \equiv a \pmod{p} \)) and also \(\gcd(2,p) = 1 \) since \(p \) is odd.

In conclusion, the congruence equation (3) has indeed 2 solutions, as desired.

Problem 15.

(i) We know that

\[
x^4 \equiv -1 \pmod{p}.
\]

So, in particular, \(x^8 \equiv 1 \pmod{p} \). We claim that the order of \(x \) modulo \(p \) is precisely 8. Indeed, it has to be a divisor of 8, but we already know that \(x^4 \not\equiv 1 \pmod{p} \) (since \(1 \not\equiv -1 \pmod{p} \) for odd \(p \)); thus the order of \(x \) modulo \(p \) is not 4. In conclusion, the order of \(x \) modulo \(p \) is 8. But always the order of a nonzero residue class modulo \(p \) must divide \(p - 1 \); so, 8 \(| \) \(p - 1 \), which yields

\[
p \equiv 1 \pmod{8}.
\]

(ii) Assume there exist only finitely many prime numbers congruent with 1 modulo 8. So, let \(p_1, \ldots, p_k \) be all such prime numbers (we know already that \(k \geq 1 \) since 17 is a prime number). Let

\[
x = 2 \cdot \prod_{i=1}^{k} p_i.
\]

Then \(x^4 + 1 \) is an odd integer larger than 1, and therefore it is divisible by some prime number \(p \), which must be odd. According to part (i), we get that \(p \equiv 1 \pmod{8} \). Therefore, \(p \) must be one of the prime numbers \(p_i \) in the above list. However, in that case we would have that

\[
p \mid x
\]

which coupled with \(p \mid (x^4 + 1) \) yields a contradiction. In conclusion, there must be infinitely many prime numbers of the form \(8n + 1 \).
Problem 16. We claim that both b and c must be divisible by p, which immediately yields the desired conclusion.

Now, we first observe that $p \nmid a$ since $\left(\frac{a}{p}\right) = -1$. Hence $ab^2 \equiv c^2 \pmod{p}$ yields that $p \mid b$ if and only if $p \mid c$. So, assume $p \nmid b$. Let $d \in \mathbb{N}$ such that

$$bd \equiv 1 \pmod{p}.$$

Then

$$(cd)^2 \equiv ab^2 \cdot d^2 \equiv a \cdot (bd)^2 \equiv a \pmod{p},$$

which contradicts the fact that $\left(\frac{a}{p}\right) = -1$. Therefore, indeed both b and c are divisible by p and thus

$$b^2 \equiv c^2 \equiv 0 \pmod{p^2}.$$

Problem 17. Clearly, if $n = 1$ we have $\phi(n) = \sigma(n) = 1$ and thus $\phi(n) + \sigma(n) = 2n$. So, from now on we assume $n > 1$. Let

$$n = \prod_{i=1}^{r} p_i^{\alpha_i}$$

be the factorization of n into a product of powers of primes. Then

$$\phi(n) = n \cdot \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right)$$

and

$$\sigma(n) = \prod_{i=1}^{r} p_i^{\alpha_i+1} - 1 = n \cdot \prod_{i=1}^{r} \frac{p_i - p_i^{-\alpha_i}}{p_i - 1}.$$

It is immediate then to see that for each prime p and for each $\alpha \in \mathbb{N}$ we have

$$\frac{p - p^{-\alpha}}{p - 1} \geq \frac{p - p^{-1}}{p - 1} = \frac{p + 1}{p} = 1 + \frac{1}{p},$$

with equality if and only if $\alpha = 1$. Thus

$$\frac{\phi(n) + \sigma(n)}{n} \geq \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) + \prod_{i=1}^{r} \left(1 + \frac{1}{p_i}\right)$$

$$= 2 \cdot \left(1 + \sum_{s=1}^{\left[\frac{r}{2}\right]} \sum_{1 \leq i_1 < i_2 < \cdots < i_{2s} \leq r} \frac{1}{\prod_{j=1}^{2s} p_{i_j}}\right)$$

$$\geq 2,$$

with equality if and only if $r = 1$ so that the above double sum is empty (since then s would range from 1 to $\left[\frac{1}{2}\right] = 0$). So, if $n > 1$ the equality is attained only when n is divisible by a unique prime number p_1, and moreover, $\exp_{p_1}(n) = 1$. In conclusion,

$$\phi(n) + \sigma(n) \geq 2n,$$

with equality if and only if $n = 1$, or if $n = p_1$ is a prime number.
Problem 18. We know that
\[2^a \equiv 1 \pmod{2^a - 1} \]
and so because \(b \in \mathbb{N} \) we have that
\[(2^a)^b \equiv 1 \pmod{2^a - 1} \]
and thus
\[2^b \equiv 1 \pmod{2^a - 1} \]
which yields that
\[2^a - 1 | 2^b - 1. \]

Problem 19. We first claim that the set
\[A := \{ x^4 \pmod{p} : x \in \mathbb{Z} \} \]
has precisely \((p + 1)/2\) elements. Indeed, we note that if \(x \equiv -y \pmod{p} \), then \(x^4 \equiv y^4 \pmod{p} \). So, on one hand, there are no more than \((p + 1)/2\) distinct elements in \(A \). On the other hand, we claim that if
\[x^4 \equiv y^4 \pmod{p}, \]
then \(x \equiv \pm y \pmod{p} \), or in other words, \(x^2 \equiv y^2 \pmod{p} \). Indeed, if \(p \mid (x^4 - y^4) \), and if \(p \nmid (x^2 - y^2) \), then we must have \(p \mid (x^2 + y^2) \).

Now, if \(p \mid y \), then we must have \(p \mid x^4 \), and so, \(p \mid x \), which would also yield that \(p \mid (x^2 - y^2) \). So, we may assume \(p \nmid y \), and letting \(z \) be the inverse of \(y \) modulo \(p \), we conclude that
\[p \mid (xz)^2 + 1, \]
or in other words that
\[(xz)^2 \equiv -1 \pmod{p}. \]
But \(p \equiv 3 \pmod{4} \), which yields a contradiction. So, indeed, if \(x^4 \equiv y^4 \pmod{p} \), then \(x \equiv \pm y \pmod{p} \). In conclusion, all of the following numbers have distinct residues modulo \(p \):
\[0^4, 1^4, \ldots, ((p - 1)/2)^4. \]
So, indeed, \(|A| = (p + 1)/2 \). We let
\[B := \{ a - x^4 \pmod{p} : x \in \mathbb{Z} \}. \]
Then \(|B| = (p + 1)/2 \), and since both \(A \) and \(B \) are contained in the set of \(p \) residues modulo \(p \), and \(|A| + |B| > p \), there exists \(w \in A \cap B \). But this means that there exist \(x, y \in \mathbb{Z} \) such that
\[x^4 \equiv w \equiv a - y^4 \pmod{p}. \]
Hence \(x^4 + y^4 \equiv a \pmod{p} \).

Problem 20. First we claim that \(f(x) \) has no root \(z \) of absolute value at most equal to 1. Indeed, otherwise
\[
0 = |f(z)|
\geq |a_0| - |a_1| \cdot |z| - |a_2| \cdot |z|^2 - \cdots - |a_n| \cdot |z|^n
\geq |a_0| - |a_1| - |a_2| - \cdots - |a_n|
> 0,
\]
which is a contradiction.
Secondly, assume f is reducible, and therefore there exist $g, h \in \mathbb{Z}[x]$ such that $f = g \cdot h$. Then $f(0) = g(0)h(0)$ and since $|f(0)| = |a_0|$ is a prime number while both $g(0)$ and $h(0)$ are integers, we conclude that either $|g(0)|$ or $|h(0)|$ equals 1. Say that $|g(0)| = 1$. Then
\[
g(x) = b_m x^m + \cdots + b_1 x + b_0,
\]
where each $b_i \in \mathbb{Z}$ and $b_0 = \pm 1$. If we let z_1, \ldots, z_m be all the roots of $g(x) = 0$ (listed with repetition, if needed), then
\[
z_1 z_2 \cdots z_m = (-1)^m \frac{b_0}{b_m}
\]
because $b_m x^m + \cdots + b_1 x + b_0 = b_m (x - z_1) \cdots (x - z_m)$. So,
\[
|z_1| \cdot |z_2| \cdots |z_m| = \frac{|b_0|}{|b_m|} \leq 1,
\]
since $|b_0| = 1 \leq |b_m|$. But this yields that there exists a root $z \in \{z_1, \ldots, z_m\}$ such that $|z| \leq 1$, and this root is then also a root of f (since $g \mid f$) and thus we obtain a contradiction. So, f is irreducible.

Problem 21. Assume there exists a prime number p dividing $2^n + 1$ such that $p \equiv 7 \pmod{8}$.

Case 1. n even.

\[
\left(\frac{2^n}{2} \right)^2 = 2^n \equiv -1 \pmod{p}.
\]
But because $p \not\equiv 1 \pmod{4}$, then -1 is not a perfect square modulo p. So we obtain a contradiction in this Case 1.

Case 2. n odd.

\[
\left(\frac{2^{(n+1)/2}}{2} \right)^2 = 2^{n+1} \equiv -2 \pmod{p}.
\]
So, $1 = \left(\frac{-2}{p} \right) = \left(\frac{-1}{p} \right) \cdot \left(\frac{2}{p} \right)$ and $\left(\frac{2}{p} \right) = 1$ since $p \equiv 7 \pmod{8}$. Therefore
\[
\left(\frac{-1}{p} \right) = 1,
\]
which is a contradiction with the fact that $p \not\equiv 1 \pmod{4}$.

This finishes our proof.

Problem 22. Assume $P(a_i) = x_0 + i$ for $i = 1, \ldots, r$, where $x_0 \in \mathbb{Z}$ and also $a_i \in \mathbb{Z}$ for each i. Since $P \in \mathbb{Z}[X]$, then
\[
(a_i - a_j)(P(a_i) - P(a_j)) \text{ for each } i \neq j.
\]
So, $a_{i+1} - a_i = \pm 1$ for $i = 1, \ldots, r - 1$. On the other hand, since $a_i \neq a_j$ for $i \neq j$ (because $P(a_i) \neq P(a_j)$), we conclude that there exists $\epsilon \in \{-1, 1\}$ such that
\[
a_{i+1} - a_i = \epsilon \text{ for } i = 1, \ldots, r - 1.
\]
But this means that if we let $Q(X) = \epsilon X + x_0 + 1 - \epsilon a_1$, then
\[
Q(a_i) = Q(a_1 + \epsilon(i - 1)) = a_1 + (i - 1) + x_0 + 1 - \epsilon a_1 = x_0 + i.
\]
So, $(P - Q)(a_i) = 0$ for all $i = 1, \ldots, r$. On the other hand $\deg(P - Q) = \deg(P) = n > 1$. So, $r \leq n$ since a polynomial of degree n cannot have more than n roots.
On the other hand, the following is an example of a polynomial of degree n which takes n consecutive integer values:

$$P(X) = \prod_{i=1}^{n}(X - i) + X.$$

Indeed, $P(i) = i$ for all $i = 1, \ldots, n.$