Problem 1. (5 points.) Let p be an odd prime number and let $a, b \in \mathbb{Z}$ be integers not divisible by p. Show that if the congruence equation
\[ax^p \equiv b \pmod{p^2} \]
is solvable, then for any positive integer n, the congruence equation
\[ax^p \equiv b \pmod{p^n} \]
is solvable.

Solution. We let $x^2 \in \mathbb{Z}$ be a solution to the congruence equation $ax^p \equiv b \pmod{p^2}$; clearly, $p \nmid x^2$ since $p \nmid b$. We construct inductively $x^m \in \mathbb{Z}$ solving the congruence equation $ax^p \equiv b \pmod{p^m}$ for all $m > 2$. So, we suppose that already
\[ax^p_m \equiv b \pmod{p^m} \]
and find $x_{m+1} := x_m + \ell p^{m-1}$ for some suitable $\ell \in \{0, 1, \ldots, p-1\}$ such that
\[ax^p_{m+1} \equiv b \pmod{p^{m+1}}. \]
We compute
\[ax^p_{m+1} - b = (ax^p_m - b) + ax^{p-1}_m p^m \cdot \ell + \sum_{i=2}^{p} ax^{p-1}_m \binom{p}{i} p^{(m-1)i} \ell^i. \]
For each $i = 2, \ldots, p-1$, we have that the above term in the summation: $ax^{p-1}_m \binom{p}{i} p^{(m-1)i} \ell^i$ is divisible by $p^{i + m - i}$ and that exponent of p is at least $m + 1$ (knowing that $i \geq 2$ and also $m \geq 2$). On the other hand, the term of the above summation: $ap^{(m-1)i} \ell^i$ is also clearly divisible by p^{m+1} simply because $m \geq 2$ and also $p \geq 3$. Therefore,
\[ax^p_{m+1} - b \equiv p^m \cdot (k_m + ax^{p-1}_m \ell) \pmod{p^{m+1}}, \]
where $k_m \in \mathbb{Z}$ satisfies $ax^p_m - b = p^m \cdot k_m$. Now, because $p \nmid a$ and also $p \nmid x_m$ (note that $p \nmid x_2$ and then for each $m > 2$, we have that $x_m \equiv x_2 \pmod{p^i}$), we conclude that we can find $\ell \in \{0, \ldots, p-1\}$ such that $p \mid (k_m + ax^{p-1}_m \ell)$, thus proving the existence of x_{m+1} with the desired property.

Problem 2. (5 points.) Find a polynomial $f \in \mathbb{Z}[x]$ with the property that there exists no integer a such that $f(a) = 0$, but on the other hand, for each positive integer m, the congruence equation
\[f(x) \equiv 0 \pmod{m} \]
is solvable.

Solution. We consider $f(x) := (x^2 + 17)(x^2 + 1)(x^2 - 17)$, which clearly has no integer roots; however, we will prove that for each positive integer m, the congruence
equation \(f(x) \equiv 0 \pmod{m} \) is solvable. For this it suffices (according to Chinese Remainder Theorem) to prove that the congruence equation \(f(x) \equiv 0 \pmod{p^a} \) is solvable for each prime power \(p^a \). We split our analysis into several cases.

Case 1. \(p \neq 2, 17 \)

In this case, we first note that not all three Legendre symbols \(\left(\frac{-17}{p} \right), \left(\frac{-1}{p} \right) \) and \(\left(\frac{17}{p} \right) \) may equal \(-1\) since
\[
\left(\frac{-17}{p} \right) = \left(\frac{-1}{p} \right) \cdot \left(\frac{17}{p} \right).
\]
So, there exists \(a \in \{-17, 17, -1\} \) such that \(\left(\frac{a}{p} \right) = 1 \). This means the congruence equation
\[
x^2 \equiv a \pmod{p}
\]
is solvable and moreover, letting \(x_0 \in \mathbb{Z} \) a solution of this congruence equation, then clearly \(2x_0 \not\equiv 0 \pmod{p} \) since \(p \neq 2 \) and also, \(p \nmid x_0 \) (because \(p \nmid a \), again because \(p \neq 17 \)). Therefore, Hensel’s Lemma applies to this solution \(x_0 \) and to the polynomial \(g(x) := x^2 - a \), thus proving that for each \(\alpha \in \mathbb{N} \), the congruence equation \(g(x) \equiv 0 \pmod{p^a} \) is solvable; in particular, the congruence equation \(f(x) \equiv 0 \pmod{p^4} \) is solvable in this case.

Case 2. \(p = 17 \)

In this case, the congruence equation \(x^2 + 1 \equiv 0 \pmod{17} \) has the solution \(x_0 = 4 \), which clearly satisfies the Hensel’s Lemma and then for each \(\alpha \in \mathbb{N} \), there exists a solution to the congruence equation \(x^2 + 1 \equiv 0 \pmod{17^\alpha} \).

Case 3. \(p = 2 \)

In this last case, we note that for \(x_4 := 1 \), we have that \(x_4^2 - 17 \equiv 0 \pmod{2^4} \). We claim that if for some \(m \geq 4 \), we have that \(x_m \in \mathbb{Z} \) satisfies \(x_m^2 - 17 \equiv 0 \pmod{2^m} \), then we can find \(\ell \in \{0, 1\} \) such that \(x_{m+1} := x_m + 2^{m-1} \ell \) satisfies \(x_{m+1}^2 - 17 \equiv 0 \pmod{2^{m+1}} \). Indeed, we let \(k_m \in \mathbb{Z} \) such that \(x_m^2 - 17 = 2^m \cdot k_m \) and then compute
\[
x_{m+1}^2 - 17 = (x_m^2 - 17) + 2^m x_m \ell + 2^{2m-2} \ell^2
\]
and since \(2m - 2 \geq m + 1 \) (because \(m \geq 4 \)), then
\[
x_{m+1}^2 - 17 \equiv 2^m \cdot (k_m + x_m \ell) \pmod{2^{m+1}},
\]
which means that (since \(x_m \) is odd because \(x_4 = 1 \) is odd and for all \(m \geq 4 \), we have that \(x_m \equiv x_4 \pmod{8} \)), we conclude that we can choose a suitable \(\ell \in \{0, 1\} \) such that \(k_m + x_m \ell \) is even and therefore \(x_{m+1}^2 - 17 \equiv 0 \pmod{2^{m+1}} \). In conclusion, each congruence equation \(f(x) \equiv 0 \pmod{2^a} \) (for \(\alpha \in \mathbb{N} \)) is solvable, as claimed.

Problem 3. (4 points.) Let \(p \) be a prime number with the property that there exists an integer \(m \) such that
\[
p \mid (m^4 - m^2 + 1).
\]
Prove that \(p \equiv 1 \pmod{12} \).

Solution. It suffices to prove that \(p \equiv 1 \pmod{3} \) and also, \(p \equiv 1 \pmod{4} \).

Now, the fact that \(p \mid (m^4 - m^2 + 1) \) means that \(p \) must be odd, since \(m^4 - m^2 + 1 = m^2(m^2 - 1) + 1 \) is odd. Furthermore, since \(m^4 - m^2 = m \cdot (m - 1)m(m + 1) \) contains a product of three consecutive integers, then \(m^4 - m^2 + 1 \) cannot be divisible by 3 and therefore, \(p > 3 \).
We have that p divides $4m^4 - 4m^2 + 4 = (2m^2 - 1)^2 + 3$, which means that -3 is a quadratic residue modulo p. We compute
\[
\left(\frac{-3}{p}\right) = \left(\frac{1}{p}\right) \cdot \left(\frac{3}{p}\right) = (-1)^{\frac{p-1}{2}} \cdot \left(\frac{p}{3}\right) \cdot (-1)^{\frac{p+1}{2}} = \left(\frac{p}{3}\right),
\]
where in the last computation we employed also the Gauss Quadratic Reciprocity Law. So, we need $1 = \left(\frac{p}{3}\right)$, which yields $p \equiv 1 \pmod{3}$.

On the other hand, $p \mid (m^2 + 1) \cdot (m^4 - m^2 + 1) = m^6 + 1$. However, p does not divide $m^6 - 1$ (since p cannot divide the difference, which is 2). So, we get that p must divide $(m^6 - 1)(m^6 + 1) = m^{12} - 1$ but it does not divide $m^6 - 1$. So, the order of m modulo p divides 12 but it does not divide 6, which means that the order $\text{ord}_p(m)$ must be divisible by 4. Since this order always divides $p - 1$, we get that $p \equiv 1 \pmod{4}$.

Since $p \equiv 1 \pmod{3}$ and $p \equiv 1 \pmod{4}$, we conclude that $p \equiv 1 \pmod{12}$.

Problem 4. (5 points.) Let p be a prime number and let $F \in \mathbb{Z}[x]$ be a polynomial of degree less than $p - 1$. Prove that p divides the sum
\[
F(0) + F(1) + \cdots + F(p-1).
\]

Solution. We let $F(x) = \sum_{i=0}^{d} c_i x^i$, where $d = \deg(F) < p - 1$ (and the coefficients c_i are all integers). Clearly, it suffices to prove that p divides $\sum_{j=1}^{p-1} j^i$ for each $i = 1, \ldots, p - 2$.

We know that there exists a primitive root g modulo the prime p and so, the nonzero residue classes modulo p are expressed as \{g, g^2, \ldots, g^{p-1}\} (modulo p). So, it suffices to prove that for each $i = 1, \ldots, p - 2$, we have that p divides
\[
\sum_{j=1}^{p-1} (g^j)^i = g^i \cdot \frac{(g^{(p-1)} - 1)}{g^i - 1},
\]
which it does since the denominator is not divisible by p (note that $1 \leq i < p - 1$ and g has order $p - 1$ modulo p), while $p \mid (g^{p-1})^i - 1$. (Also, the above sum is clearly an integer.)

Problem 5. (5 points.) Let p be a prime number, let $n \in \mathbb{N}$ and let $f \in \mathbb{Z}[x_1, \ldots, x_n]$ be a polynomial of degree less than n. Prove that the number of solutions to the congruence equation
\[
f(x_1, \ldots, x_n) \equiv 0 \pmod{p}
\]
is divisible by p.

Solution. The fundamental observation is that for any integer a, we have that $p \mid 1 - a^{p-1}$ if $a \not\equiv 0 \pmod{p}$ and $1 - a^{p-1} \equiv 1 \pmod{p}$ if $p \mid a$. So, the number
\[
S := \sum_{0 \leq a_1, \ldots, a_n \leq p-1} (1 - f(a_1, \ldots, a_n)^{p-1})
\]
is a number congruent modulo p with the number N of solutions to the congruence equation $f(x_1, \ldots, x_n) \equiv 0 \pmod{p}$. We consider any monomial appearing in the expansion of $f(x_1, \ldots, x_n)^{p-1}$; such a monomial M_j is of the form
\[
x_1^{d_1} \cdots x_n^{d_n},
\]
for some nonnegative integers d_i with the property that
\[\sum_{i=1}^{n} d_i \leq d \cdot (p - 1) < n \cdot (p - 1). \]

So, in the monomial M_j, there is at least one index $i \in \{1, \ldots, n\}$ such that the exponent d_i of x_i in M is less than $p - 1$. But then
\[S \equiv - \sum_j \sum_{0 \leq a_1, \ldots, a_n \leq p-1} c_j M_j(a_1, \ldots, a_n) \pmod{p} \]
for some integer coefficients c_j (since we have p^n terms in the above inner summation). On the other hand,
\[\sum_{0 \leq a_1, \ldots, a_n \leq p-1} M_j(a_1, \ldots, a_n) = \prod_{i=1}^{n} \left(\sum_{\ell=0}^{p-1} \ell d_i \right). \]

By the result of Problem 4, for the particular index i for which $d_i < p - 1$, we have that p divides the sum $\sum_{\ell=0}^{p-1} \ell d_i$ and therefore, p divides the sum $\sum_{0 \leq a_1, \ldots, a_n \leq p-1} M_j(a_1, \ldots, a_n)$. In conclusion, $p \mid S$ and therefore, also $p \mid N$.