1. Problems

Problem 1. Find arcsin \(\sin \left(\frac{11\pi}{3} \right) \).

Problem 2. Find the derivative of the functions:
 (a) \(y(x) = 5^x \)
 (b) \(y(x) = \sin(x) \ln(x) \)

Problem 3. Find the inverse function for \(f(x) = 5^x \).

Problem 4. Find the inverse function for \(f(x) = 3^x^2 \) where \(f : [0, +\infty) \rightarrow [1, +\infty) \).

Problem 5.
 (1) If \(f(x) = e^x + x^e \) for positive real numbers \(x \), and \(g(x) \) is the inverse function for \(f(x) \), find \(g(2e^e) \).
 (2) If \(f(x) = (x^2 + 1)^x \) for positive real numbers \(x \), and \(g(x) \) is the inverse of \(f(x) \), find \(g(2) \).

2. Solutions.

Problem 1. \(\arcsin \left(\sin \left(\frac{11\pi}{3} \right) \right) \) is an angle \(\theta \) with the properties:
 • \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\); and
 • \(\sin(\theta) = \sin \left(\frac{11\pi}{3} \right) \).

We know that \(\sin(x) \) is a function periodic of period \(2\pi \); so,
\[
\sin \left(\frac{11\pi}{3} \right) = \sin \left(\frac{11\pi}{3} - 2\pi \right) = \sin \left(\frac{11\pi}{3} - 4\pi \right) = \sin \left(\frac{-\pi}{3} \right).
\]
So, \(\theta = -\frac{\pi}{3} \). Note that \(\frac{11\pi}{3} \) or \(\frac{11\pi}{3} - 2\pi = \frac{5\pi}{3} \) are not the correct answer since they are not in the interval \(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \).

Problem 2.
(a) We can either differentiate directly and get
\[y'(x) = 5^x \cdot \ln(5) \cdot (3^x)' = 5^x \cdot \ln(5) \cdot 3^x \cdot \ln(3). \]
Alternatively we can use logarithmic differentiation and get
\[\ln(y(x)) = 3^x \cdot \ln(5) \]
and then we differentiate (note the chain rule for the left hand side)
\[\frac{y'(x)}{y(x)} = 3^x \cdot \ln(3) \cdot \ln(5), \]
and so
\[y'(x) = y(x) \cdot 3^x \cdot \ln(3) \cdot \ln(5) = 5^x \cdot 3^x \cdot \ln(3) \cdot \ln(5). \]
(b) We use logarithmic differentiation:
\[\ln(y(x)) = \ln(x) \cdot \ln(\sin(x)), \]
and then differentiate
\[\frac{y'(x)}{y(x)} = \frac{1}{x} \cdot \ln(\sin(x)) + \ln(x) \cdot \frac{\cos(x)}{\sin(x)}, \]
and so
\[y'(x) = \sin(x)^{\ln(x)} \cdot \left(\frac{\ln(\sin(x))}{x} + \frac{\ln(x) \cdot \cos(x)}{\sin(x)} \right). \]

Problem 3. We let \(y = g(x) \) be the inverse function of \(f(x) \). Then
\[f(g(x)) = x, \]
or in other words, \(f(y) = x \). But \(f(y) = 5^y \); so
\[5^y = x. \]
We apply the logarithm in base 5 to both sides and compute
\[3^y = \log_5(x). \]
Then we apply the logarithm in base 3 and get
\[y = g(x) = \log_3(\log_5(x)) \]
is the inverse function for \(f(x) \).

Second solution: In order to find \(y = g(x) \) the inverse function of \(f(x) \), we could work only with the natural logarithm \(\ln \). So, from \(f(g(x)) = x \) which yields \(f(y) = x \) and thus
\[5^y = x. \]
We apply the natural logarithm and get
\[3^y \cdot \ln(5) = \ln(x), \]
and so,
\[3^y = \frac{\ln(x)}{\ln(5)}. \]
Then applying again the natural logarithm yields
\[y \cdot \ln(3) = \ln \left(\frac{\ln(x)}{\ln(5)} \right), \]
and thus the inverse function is
\[y = g(x) = \frac{\ln\left(\frac{\ln(x)}{\ln(5)}\right)}{\ln(3)}. \]

The two expressions for \(g(x) \) computed with the above two methods are the same since
\[\log_5(x) = \frac{\ln(x)}{\ln(5)}. \]

Similarly, for any \(t \) we have
\[\log_3(t) = \frac{\ln(t)}{\ln(3)}. \]

The above properties of the logarithm are just as important as the identities:
\[\log_a(A \cdot B) = \log_a(A) + \log_a(B) \]
and
\[\log_a(A^B) = B \cdot \log_a(A), \]
for any positive real numbers \(a, A \) and \(B \).

Problem 4. We have that \(y = 3x^2 \) and now we solve for \(x \) in terms of \(y \) in order to find the inverse function. So, we have (after taking logarithms of both sides)
\[\log_3(y) = x^2. \]

Then we take square-roots and obtain
\[x = \sqrt{\log_3(y)}. \]

So, the inverse function for \(f(x) \) is the function \(g : [1, +\infty) \rightarrow [0, +\infty) \) given by the formula
\[f(x) = \sqrt{\log_3(x)}. \]

Problem 5. For these type of questions, we want to guess the value \(b = g(a) \) such that
\[f(b) = f(g(a)) = a. \]

because \(g(x) \) is the inverse of \(f(x) \). We only guess the value \(b = g(a) \) since it is very hard to find the actual formula for \(g(x) \), the inverse function of \(f(x) \). But guessing the value \(b = g(a) \) turns out not to be very difficult.

(a) So, we have \(f(x) = e^x + x^2 \) and we want to find \(g(2e^e) \). So, we want to guess the value \(b = g(2e^e) \) such that \(f(g(2e^e)) = 2e^e \), i.e. \(f(b) = 2e^e \). In other words, \(b \) satisfies
\[e^b + b^2 = 2e^e. \]

It’s not hard to guess that \(b = e \) works. So, \(g(2e^e) = e. \)

(b) This time we have \(f(x) = (1 + x^2)^e \) and we want to find \(g(2) \). So, letting \(b = g(2) \) then \(f(g(2)) = 2 \) and so, \(f(b) = 2 \). In other words, \(b \) satisfies
\[(1 + b^2)^b = 2. \]

It’s not hard to guess that \(b = 1 \) works. So, \(g(2) = 1. \).