Problem 1. Find the largest possible integer which is the product of finitely many positive integers whose sum equals 2018.

Solution. Let x_1, \ldots, x_r be positive integers whose sum is 2018 and which have the largest possible product.

First we notice that if $x_r \geq 4$, then replacing x_r by $x'_r = 2$ and $x'_{r+1} = x_r - 2$, while $x'_i = x_i$ for each $i \leq r - 1$ leads to a larger product. So, this means that each x_i is less than 4.

Secondly, we cannot have $x_r = 1$ since then replacing $x'_{r-1} = x_r - 1$ and keeping $x'_i = x_i$ for each $i \leq r - 2$ would lead to a sequence x'_1, \ldots, x'_{r-1} whose sum is 2018 but whose product is larger than for the product of the original numbers x_i.

So, we conclude that each $x_i \in \{2, 3\}$. Now, if we were to have three of the x_i's equal to 2, we could replace them with two numbers equal to 3 and the product would only increase. Therefore, we have only one or two numbers equal to 2 and all the rest of the numbers equal 3. Since 2018 $\equiv 2 \pmod{3}$, this means $x_1 = 2$ and $x_i = 3$ for each $i = 2, \ldots, r$; clearly, since $2 + 3r = 2018$, then we must have $r = 672$. So, the largest product of the numbers adding up to 2018 is $2 \cdot 3^{672}$.

Problem 2. Let $P \in \mathbb{R}[x]$ be a polynomial with the property that $P(x) > 0$ for each positive real number x. Then prove that there exist polynomials $Q_1, Q_2 \in \mathbb{R}[x]$ with all coefficients nonnegative, such that $P = Q_1 \cdot Q_2$.

Solution. First of all, since $P(x) > 0$ for all $x > 0$, we conclude that its leading coefficient must be positive; so, without loss of generality we may assume from now on that $P(x)$ is monic since its leading coefficient can be absorbed in $Q_1(x)$.

Second, we know that $P(x)$ is a product of linear polynomials of the form $x + r_i$ for some nonnegative real numbers r_i and perhaps also a product of unfactorable quadratics (over \mathbb{R}), i.e., quadratics of the form $x^2 + a_i x + b_i$ where $a_i^2 < 4b_i$. So, it suffices to prove that each polynomial of the form

$$x + r_i \text{ for some } r_i \geq 0, \text{ and}$$

$$x^2 + a_i x + b_i \text{ where } a_i^2 < 4b_i.$$

is of the form $\frac{Q_1(x)}{Q_2(x)}$ where each Q_1, Q_2, are polynomials with nonnegative real coefficients. Clearly, this statement holds for polynomials of the form $x + r_i$; so, we’re left to analyze the case of quadratic polynomials. In this latter case, we let $f(x) := x^2 + ax + b$

such a quadratic polynomial with $a^2 < 4b$; then we let $b := r^2$ for some positive real number r and then we let $t \in [0, \pi]$ such that $a = -2r \cos(t)$. Our goal is to
find some polynomials \(g_1(x) \) and \(g_2(x) \) with nonnegative real coefficients such that
\[
f(x) = \frac{g_1(x)}{g_2(x)},
\]
If \(t \in [\pi/2, \pi] \), then we are done (simply take \(g_1(x) := f(x) \) and \(g_2(x) := 1 \)).

Now, if \(t \in [0, \pi/2) \) (i.e., \(\cos(t) > 0 \) and implicitly, \(a < 0 \)), we observe that
\[
f(x) \cdot (x^2 - ax + b) = x^4 - (a^2 - 2b)x^2 + b^2 = x^4 - 2a^2 \cos(2t) + r^4.
\]

Then we repeat our analysis and so, if \(2t \in [\pi/2, \pi] \), then we are done since then \(\cos(2t) \leq 0 \). Now, if \(2t \in [0, \pi/2) \) (and so, implicitly, \(a^2 > 2b \)), then we repeat the construction and get:
\[
f(x) \cdot (x^2 - ax + b) \cdot (x^4 + (a^2 - 2b)x^2 + b^2) = x^8 - 2a^2 \cos(4t)x^4 + r^8.
\]
Eventually, there must exist a first positive nonnegative integer \(i_0 \) such that \(2^{i_0}t \in [\pi/2, \pi] \) and for that \(i_0 \), we have that the corresponding polynomial
\[
x^{2^i_0 + 1} - 2a^2 \cos(2^{i_0}t)x^{2^i_0} + r^{2^{i_0} + 1}
\]
has all its coefficients nonnegative and we reached this polynomial by multiplying \(f(x) \) by polynomials which were themselves with nonnegative coefficients.

Problem 3. Prove that there exist infinitely many \(n \in \mathbb{N} \) with the property that
\(7^n \) contains in its decimal expansion 2018 consecutive digits equal to 0.

Solution. The point is that \(\gcd(7, 10) = 1 \) and so, Euler’s Theorem guarantees that
\[
7^{2018} \cdot 2^{2020} \equiv 7^{\phi(10^{2019})} \equiv 1 \pmod{10^{2019}},
\]
thus showing that \(7^{2018} \cdot 2^{2020} \) ends with the digit 1 and it has 2018 digits of 0 preceding that last digit.

Problem 4. Let \(a \in (0, 1) \) be a real number. We consider the function \(f : (0, 1] \to (0, 1] \) given by:
\[
f(x) = x + 1 - a \quad \text{if } 0 < x \leq a \quad \text{and} \quad f(x) = x - a \quad \text{if } a < x \leq 1.
\]
Prove that for any interval \(I \subseteq (0, 1] \), there exists a positive integer \(n \) such that
\[f^{\circ n}(I) \cap I \neq \emptyset.
\]

Solution 1. We note that \(f \) is a bijection mapping \((0, 1] \) into itself. Also, we claim that for any interval \(J \subseteq (0, 1] \), we have that \(f(J) \) is also a union of intervals whose sums of their lengths equals the length of \(J \). This is proven easily by considering the three cases:

Case 1. \(J \subseteq (0, a] \). In this case, \(f(J) \) is an interval of the same length as \(J \) contained in \((1 - a, 1)\].

Case 2. \(J \subseteq (a, 1] \). In this case, \(f(J) \) is an interval of the same length as \(J \) contained in \((0, 1 - a)\].

Case 3. \(J = (\alpha, \beta] \) (or any other choice of including or not any of the two endpoints) for some \(0 \leq \alpha < a < \beta \leq 1 \). In this case, \(f(J) = (\alpha + 1 - a, 1] \cup (0, \beta - a] \) whose length is
\[
1 - (\alpha + 1 - a) + (\beta - a) - 0 = \beta - \alpha, \text{ as claimed.}
\]

Now, if \(f^m(I) \cap I = \emptyset \), then we claim that \(f(I) \cap f^j(I) = \emptyset \) for any integers \(i > j \geq 0 \). Indeed, using the fact that \(f \) is a bijection on \((0, 1] \) (and therefore, \(f^m \) is a bijection for each \(m \in \mathbb{N} \)), we get that if there exists some \(x \in f(I) \cap f^j(I) \), then
letting $y \in (0, 1]$ be the unique real number such that $f^i(y) = x$, then we would have that $y \in I \cap f^{-j}(I)$, contradiction. (Note that we do not claim that y is fixed by f^{-j}, however we know that $x = f^j(y) \in f^j(f^{-j}(I))$ and f^j is a bijection, thus showing that $y \in f^{-j}(I)$.) But then we would have an infinite sequence of unions of intervals $f^n(I)$, each one of them of total length equal to the length of I and all these intervals would fit into the interval $(0, 1]$, which is a contradiction. So, indeed there must be some $n \in \mathbb{N}$ such that $f^n(I) \cap I \neq \emptyset$.

Solution 2. We notice that from our definition of the function f, we have that for any real number x, we have that $f(x) = x + n a \in \mathbb{Z}$. By induction, we prove that $f^n(x) = x + n a \in \mathbb{Z}$ for each $x \in (0, 1]$. Indeed, assuming that there exists some $p_n(x) \in \mathbb{Z}$ (i.e., an integer depending on x) such that

$$f^n(x) = x - na + p_n$$

then we compute

$$f^{n+1}(x) = f(x - na + p_n(x)) = x - na + p_n(x) - a + p_1(x - na + p_n(x)) \in (x - (n+1)a + \mathbb{Z},$$

where $p_1(x) := f(x) - (x - a)$ (and more generally, $p_{n}(x) := f^{n}(x) - (x - na)$). So, indeed, $f^n(x) = x - na \in \mathbb{Z}$ for each $n \in \mathbb{N}$ and for each $x \in (0, 1]$.

Now, for any given interval I we claim that there must exist some $x \in I$ such that also $x \in f^n(I)$, i.e., there exists some $y \in I$ such that

$$x = f^n(y) = y - na + p_n(y).$$

So, $na - p_n(y) = y - x$, i.e., for any $\epsilon > 0$, there exists some positive integer n and some integer q_n such that $na - q_n \in (-\epsilon, \epsilon)$. The conclusion follows from a classical argument looking at the fractional part of na as we vary $n \in \mathbb{N}$ and note that for some N sufficiently large (anything larger than $1/\epsilon$ would work) we must have two distinct integers $N \geq i > j \geq 0$ such that $|\{ia\} - \{ja\}| < \epsilon$ and so, $(i - j)a - q \in (-\epsilon, \epsilon)$, where $q = \lfloor ia \rfloor - \lfloor ja \rfloor$ (the difference of their corresponding integer parts).

Problem 5. Find (with proof) all possible function $f : \mathbb{N} \rightarrow \mathbb{N}$ with the property that $f(n + 1) > f(f(n))$ for each $n \in \mathbb{N}$.

Solution. We will prove that there is only one such function, which is $f(n) = n$ for each $n \in \mathbb{N}$.

First we prove by induction on k that for each $n \geq k$, we have that $f(n) \geq k$. The base case $k = 1$ is obvious. So, assuming that we prove $f(n) \geq k$ for each $n \geq k$, next we derive that $f(n) \geq k + 1$ for each $n \geq k + 1$. Indeed, for any $n \geq k$, we have that

$$f(n + 1)$$

$$> f(f(n))$$

by the main hypothesis

$$= f(m)$$

for some $m \geq k$ since $n \geq k$ and using the inductive hypothesis

$$\geq k$$

again by the inductive hypothesis.

So, indeed $f(n + 1) \geq k + 1$ for each $n \geq k$, which concludes the proof for our claim that $f(n) \geq k$ whenever $n \geq k$ for any given $k \in \mathbb{N}$.

Now, assume there exists some $n \in \mathbb{N}$ such that $f(n) > n$ and we will derive a contradiction, which will conclude our proof that the only function is the one
satisfying $f(n) = n$ for each $n \in \mathbb{N}$. So, let n_1 be the smallest positive integer n such that $f(n) > n$. Clearly, we cannot have $f(n_1) = n_1 + 1$ since then
\[f(n_1 + 1) > f(f(n_1)) = f(n_1 + 1), \] contradiction.
Also, since n_1 is the smallest such positive integer, then it must be that for each positive integer $n < n_1$, we have that $f(n) = n$. Now, for each $n > n_1$, we have that $f(n) > f(f(n - 1))$ and moreover, $f(n - 1) \geq n_1$ since $n > n_1$ and $f(k) \geq k$ for each $k \in \mathbb{N}$. Now, if $f(n - 1) = n_1$, we note that it cannot be that $n - 1 \geq n_1 + 1$ since then we would have that $f(n - 1) \geq n_1 + 1$, a contradiction. So, if $f(n - 1) = n_1$ then we would get that $n - 1 = n_1$, which is again a contradiction since our assumption yields that $f(n_1) > n_1$. In conclusion, we must have that $f(n - 1) > n_1$. So, this means that our hypothesis that $f(n_1) > n_1$ yields the following property: for each $n > n_1$, there exists some $m > n_1$ such that $f(n) > f(m)$ (more precisely, $m = f(n - 1)$). But this would mean that the set of positive integers
\[\{f(n_1 + 1), f(n_1 + 2), \ldots, \ldots \} \]
does not have a minimal element, which is impossible. So, indeed, we must have that $f(n) = n$ for each $n \in \mathbb{N}$.