Problem 1. Let $k \in \mathbb{N}$ and let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{N}$. We know that $\gcd(a_i, b_i) = 1$ for each $i = 1, \ldots, k$. We let M be the least common multiple of the numbers b_1, \ldots, b_k and also, we let D be the greatest common divisor of the numbers a_1, \ldots, a_k. Then prove that the greatest common divisor of all the numbers $\frac{a_i \cdot M}{b_i}$ for $i = 1, \ldots, k$ is equal to D.

Problem 2. Let $P \in \mathbb{Z}[x]$ be a polynomial of degree $\deg(P) \geq 1$. We let $n(P)$ be the number of all integers k for which $P(k)^2 = 1$. Prove that $n(P) - \deg(P) \leq 2$.

Problem 3. Let a_1, \ldots, a_5 be real numbers such that $a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 = 1$. Prove that $\min_{1 \leq i < j \leq 5}(a_i - a_j)^2 \leq \frac{1}{10}$.

Problem 4. Let n be a positive integer. Prove that the number
\[
\sum_{k=0}^{n} \left(\frac{2n+1}{2k+1}\right) \cdot 8^k
\]
is not divisible by 5.

Problem 5. Let n be a positive integer, let a_1, \ldots, a_n be positive real numbers, and let $q \in (0, 1)$ be a real number. Prove that there exist n real numbers b_1, \ldots, b_n satisfying the following properties:

\begin{itemize}
 \item $a_k < b_k$ for each $k = 1, \ldots, n$;
 \item $q < \frac{\sum_{i=1}^{k} b_i}{\sum_{i=1}^{n} a_i} < \frac{k}{q}$ for $k = 1, \ldots, n - 1$; and
 \item $b_1 + \cdots + b_n < \frac{1 + q}{1 - q} \cdot (a_1 + \cdots + a_n)$.
\end{itemize}

Problem 6. For each $n \in \mathbb{N}$, we let Q_n be a square of side length $\frac{1}{n}$. Prove that in a square of side length $\frac{3}{2}$ we can arrange all the squares Q_n such that for any $m \neq n$, the squares Q_m and Q_n are placed so that there are no interior common points for both Q_m and Q_n.