
Chapter 5

Wright-Fisher Processes

Figure 5.1: Fisher and Wright

5.1 Introductory remarks

The BGW processes and birth and death processes we have studied in the previous
chapters have the property that

(5.1) Xn → 0 or ∞, a.s.

A more realistic model is one in which the population grows at low population
densities and tends to a steady state near some constant value. The Wright-
Fisher model that we consider in this chapter (and the corresponding Moran
continuous time model) assume that the total population remains at a constant
level N and focusses on the changes in the relative proportions of the different
types. Fluctuations of the total population, provided that they do not become
too small, result in time-varying resampling rates in the Wright-Fisher model but
do not change the main qualitative features of the conclusions.

The branching model and the Wright-Fisher idealized models are complemen-
tary. The branching process model provides an important approximation in two
cases:
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70 CHAPTER 5. WRIGHT-FISHER PROCESSES

• If the total population density becomes small then the critical and near
critical branching process provides an useful approximation to compute ex-
tinction probabilities.

• If a new type emerges which has a competitive advantage, then the super-
critical branching model provides a good approximation to the growth of
this type as long as its contribution to the total population is small.

Models which incorporate multiple types, supercritical growth at low densities
and have non-trivial steady states will be discussed in a later chapter. The
advantage of the idealized models we discuss here is the possibility of explicit
solutions.

5.2 Wright-Fisher Markov Chain Model

The classical neutral Wright-Fisher (1931) model is a discrete time model of a
population with constant size N and types E = {1, 2}. Let Xn be the number
of type 1 individuals at time n. Then Xn is a Markov chain with state space
{0, . . . , N} and transition probabilities:

P (Xn+1 = j|Xn = i) =

(
N
j

)(
i

N

)j (
1− i

N

)N−j
, j = 0, . . . , N.

In other words at generation n+ 1 this involves binomial sampling with prob-
ability p = Xn

N
, that is, the current empirical probability of type 1. Looking

backwards from the viewpoint of generation n+ 1 this can be interpreted as hav-
ing each of the N individuals of the (n + 1)st generation “pick their parents at
random” from the population at time n.

Similarly, the neutralK-allele Wright Fisher model with typesEK = {e1, . . . , eK}
is given by a Markov chain Xn with state space \(EK) (counting measures) and

P (Xn+1 = (β1, . . . βK)|Xn = (α1, . . . , αK))(5.2)

=
N !

β1!β2! . . . βK !

(α1

N

)β1

. . .
(αK
N

)βK
In this case the binomial sampling is simply replaced by multinomial sampling.

Consider the multinomial distribution with parameters (N, p1, . . . , pK). Then
the moment generating function is given by

(5.3) M(θ1, . . . , θK) = E(exp(
K∑
i=1

θiXi)) =

(
K∑
i=1

pie
θi

)N

Then

(5.4) E(Xi) = Npi, Var(Xi) = Npi(1− pi),
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and

(5.5) Cov(Xi,Xj) = −Npipj, i 6= j.

Remark 5.1 We can relax the assumptions of the Wright-Fisher model in two
ways. First, if we relax the assumption of the total population constant, equal to
N , we obtain a Fisher-Wright model with variable resampling rate (e.g. Donnelly
and Kurtz [167] and Kaj and Krone [359]).

To introduce the second way to relax the assumptions note that we can obtain
the Wright-Fisher model as follows. Consider a population of N individuals in
generation n with possible types in EK, Y n

1 , . . . , Y
n
N . Assume each individual has

a Poisson number of offspring with mean m, (Z1, . . . , ZN) and the offspring is of
the same type as the parent. Then

conditioned on
N∑
i=1

Zi = N,

the resulting population (Y
(n+1)

1 , . . . , Y
(n+1)
N ) is multinomial (N ; 1

N
; . . . , 1

N
), that

is, we have a a multitype (Poisson) branching process conditioned to have constant
total population N . If we then define

(5.6) pn+1(i) =
1

N

N∑
j=1

1(Y
(n+1)
j = i), i = 1, . . . , K,

then (pn+1(1), . . . , pn+1(K)) is multinomial (N ; pn(1), . . . , pn(K)) where

(5.7) pn(i) =
1

N

N∑
j=1

1(Y n
j = i), i = 1, . . . , K.

We can generalize this by assuming that the offspring distribution of the individ-
uals is given by a common distribution on N0. Then again conditioned the total
population to have constant size N the vector (Y n+1

1 , . . . , Y n+1
N ) is exchangeable

but not necessarily multinomial. This exchangeability assumption is the basis of
the Cannings Model (see e.g. Ewens [243]).

A basic phenomenon of neutral Wright-Fisher without mutation is fixation,
that is, the elimination of all but one type at a finite random time. To see this
note that for each j = 1, . . . , K, δj ∈ P(EK) are absorbing states and Xn(j) is
a martingale. Therefore Xn → X∞, a.s. Since Var(Xn+1) = NXn(1 − Xn), this
means that X∞ = 0 or 1, a.s. and Xn must be 0 or 1 after a finite number of
generations (since only the values k

N
are possible).
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5.2.1 Types in population genetics

The notion of type in population biology is based on the genotype. The genotype
of an individual is specified by the genome and this codes genetic information
that passes, possibly modified, from parent to offspring (parents in sexual re-
production). The genome consists of a set of chromosomes (23 in humans). A
chromosome is a single molecule of DNA that contains many genes, regulatory
elements and other nucleotide sequences. A given position on a chromosome is
called a locus (loci) and may be occupied by one or more genes. Genes code for
the production of a protein. The different variations of the gene at a particular
locus are called alleles. The ordered list of loci for a particular genome is called
a genetic map. The phenotype of an organism describes its structure and be-
haviour, that is, how it interacts with it environment. The relationship between
genotype and phenotype is not necessarily 1-1. The field of epigenetics studies
this relationship and in particular the mechanisms during cellular development
that produce different outcomes from the same genetic information.

Diploid individuals have two homologous copies of each chromosome, usually
one from the mother and one from the father in the case of sexual reproduction.
Homologous chromosomes contain the same genes at the same loci but possibly
different alleles at those genes.

5.2.2 Finite population resampling in a diploid population

For a diploid population with K-alleles e1, . . . , eK at a particular gene we can

focus on the set of types given by E2◦
K where K(K+1)

2
is the set of unordered pairs

(ei, ej). The genotype (ei, ej) is said to be homozygous (at the locus in question)
if ei = ej, otherwise heterozygous.

Consider a finite population of N individuals. Let

Pij = proportion of type (ei, ej)

Then, pi, the proportion of allele ei is

pi = Pii +
1

2

∑
j 6=i

Pij.

The probability {Pij} on E2◦
K is said to be a Hardy-Weinberg equilibrium if

(5.8) Pij = (2− δij)pipj.

This is what is obtained if one picks independently the parent types ei and ej
from a population having proportions {pi} ( in the case of sexual reproduction
this corresponds to “random mating”).

Consider a diploid Wright-Fisher model of with N individuals therefore 2N
genes with random mating. This means that an individual at generation (n+ 1)
has two genes randomly chosen from the 2N genes in generation n.
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In order to introduce the notions of identity by descent and genealogy we as-
sume that in generation 0 each of the 2N genes correspond to different alleles.
Now consider generation n. What is the probability, Fn, that an individual is
homozygous, that is, two genes selected at random are of the same type (ho-
mozygous)? This will occur only if they are both descendants of the same gene
in generation 0.

First note that in generation 1, this means that an individual is homozygous
only if the same allele must be selected twice and this has probability 1

2N
. In

generation n + 1 this happens if the same gene is selected twice or if different
genes are selected from generation n but they are identical alleles. Therefore,

(5.9) F1 =
1

2N
, Fn =

1

2N
+ (1− 1

2N
)Fn−1.

Let Hn := 1− Fn (heterozygous). Then

(5.10) H1 = 1− 1

2N
, Hn = (1− 1

2N
)Hn−1, Hn = (1− 1

2N
)n

Two randomly selected genes are said to be identical by descent if they are the
same allele. This will happen if they have a common ancestor. Therefore if T2,1

denotes the time in generations back to the common ancestor we have

(5.11) P (T2,1 > n) = Hn = (1− 1

2N
)n, n = 0, 1, 2, . . . ,

(5.12) P (T2,1 = n) =
1

2N
(1− 1

2N
)n−1, n = 1, 2 . . . .

Similarly, for k randomly selected genes they are identical by descent if they
all have a common ancestor. We can consider the time Tk,1 in generations back
to the most recent common ancestor of k individuals randomly sampled from
the population. We will return to discuss the distribution of Tk,1 in the limit as
N →∞ in Chapter 9.

5.2.3 Diploid population with mutation and selection

In the previous section we considered only the mechanism of resampling (genetic
drift). In addition to genetic drift the basic genetic mechanisms include mutation,
selection and recombination. In this subsection we consider the Wright-Fisher
model incorporating mutation and selection.

For a diploid population of size N with mutation, selection and resampling the
reproduction cycle can be modelled as follows (cf [225], Chap. 10). We assume
that in generation 0 individuals have genotypic proportions {Pij} and therefore
the proportion of type i (in the population of 2N genes) is

pi = Pii +
1

2

∑
j 6=i

Pij.



74 CHAPTER 5. WRIGHT-FISHER PROCESSES

Stage I:
In the first stage diploid cells undergo meiotic division producing haploid gametes
(single chromosomes), that is, meiosis reduces the number of sets of chromosomes
from two to one. The resulting gametes are haploid cells; that is, they contain one
half a complete set of chromosomes. When two gametes fuse (in animals typically
involving a sperm and an egg), they form a zygote that has two complete sets of
chromosomes and therefore is diploid. The zygote receives one set of chromosomes
from each of the two gametes through the fusion of the two gametes. By the
assumption of random mating, then in generation 1 this produces zygotes in
Hardy-Weinberg proportions (2− δij)pipj.

Stage II: Selection and Mutation.
Selection. The resulting zygotes can have different viabilities for survival. The

viability of (ei, ej) has viability Vij. The the proportions of surviving zygotes are
proportional to the product of the viabilities and the Hardy-Weinberg propor-
tions, that is,

(5.13) P sel
k,` =

Vk` · (2− δk`)pkp`∑
k′≤`′(2− δk′`′)Vk′`′pk′p`′

Mutation. We assume that each of the 2 gametes forming zygote can (inde-
pendently) mutate with probability pm and that if a gamete of type ei mutates
then it produces a gamete of type ej with probability mij.

(5.14)

P sel,mut
ij = (1− 1

2
δij)

∑
k≤`

(mkim`j +mkjm`i)P
sel
k`

= (1− 1

2
δij)

∑
k≤`

(mkim`j +mkjm`i)
Vk` · (2− δk`)pkp`∑

k′≤`′(2− δk′`′)Vk′`′pk′p`′

Stage III: Resampling. Finally random sampling reduces the population to N
adults with proportions P next

ij where

(5.15) (P next
ij )i≤j ∼

1

N
multinomial (N, (P sel,mut

ij )i≤j).

We then obtain a population of 2N gametes with proportions

(5.16) pnext
i = P next

ii +
1

2

∑
j 6=i

P next
ij .

Therefore we have defined the process {XN
n }n∈N with state space PN (EK). If

XN
n is a Markov chain we defined the transition function

P (XN
n+1 = (pnext

1 , . . . , pnext
K )|XN

n = (p1, . . . , pK)) = πp1,...,pK
(pnext

1 , . . . , pnext
K )
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where the function π is obtained from (5.14), (5.15), (5.16). See Remark 5.7.

5.3 Diffusion Approximation of Wright-Fisher

5.3.1 Neutral 2-allele Wright-Fisher model

As a warm-up to the use of diffusion approximations we consider the case of 2
alleles A1, A2, (k = 2). Let XN

n denote the number of individuals of type A1 at
the nth generation. Then as above {XN

n }n∈N is a Markov chain.

Theorem 5.2 (Neutral case without mutation) Assume that N−1XN
0 → p0 as

N →∞. Then

{pN(t) : t ≥ 0} ≡ {N−1XN
bNtc, t ≥ 0} =⇒ {p(t) : t ≥ 0}

where {p(t) : t ≥ 0} is a Markov diffusion process with state space [0, 1] and with
generator

(5.17) Gf(p) =
1

2
p(1− p) d

2

dp2
f(p)

if f ∈ C2([0, 1]). This is equivalent to the pathwise unique solution of the SDE

dp(t) =
√
p(t)(1− p(t))dB(t)

p(0) = p0.

Proof. Note that in this case XN
n+1 is Binomial(N, pn) where pn = XN

n

N
. Then

from the Binomial formula,

EXN
n

(
XN
n+1

N
) =

XN
n

N

EXN
n

[

(
XN
n+1

N
− XN

n

N

)2

| X
N
n

N
] =

1

N

(
XN
n

N

(
1− XN

n

N

))
.

We can then verify that

(5.18) {pN(t) := N−1XN
bNtc : t ≥ 0} is a martingale

with

E(pN(t2)− pN(t1))2 = E

bNt2c∑
k=bNt1c

(pN(
k + 1

N
)− pN(

k

N
))2(5.19)

=
1

N
E

bNt2c∑
k=bNt1c

pN(
k

N
)(1− pN(

k

N
))
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and then that

(5.20) MN(t) = p2
N(t)− 1

N

bNt2c∑
k=bNt1c

pN(
k

N
)(1− pN(

k

N
))

is a martingale.
Let PN

pN
∈ P(D[0,1]([0,∞)) denote the probability law of {pN(t)}t≥0 with

pN(0) = pN . From this we can prove that the sequence {PN
pN (0)}N∈N is tight

on P(D[0,∞)([0, 1])). To verify this as in the previous chapter we use Aldous cri-
terion PN

pN (0)(pN(τN + δN)− pN(τN) > ε)→ 0 as N →∞ for any stopping times

τN ≤ T and δN ↓ 0. This follows easily from the strong Markov property, (5.19)
and Chebyshev’s inequality. Since the processes pN(·) are bounded it then follows
that for any limit point Pp0 of PN

pN (0) we have

(5.21)

{p(t)}t≥0 is a bounded martingale with p(0) = p0 and with increasing process

〈p〉t =

∫ t

0

p(s)(1− p(s))ds.

Since the largest jump of pN(·) goes to 0 as N → ∞ the limiting process is
continuous (see Theorem 17.14 in the Appendix). Also, by the Burkholder-Davis-
Gundy inequality we have

(5.22) E((p(t2)− p(t1))4) ≤ const · (t2 − t1)2,

so that p(t) satisfies Kolmogorov’s criterion for a.s. continuous.
We can then prove that there is a unique solution to this martingale problem,

that is, for each p there exists a unique probability measure on C[0,∞)([0,∞)) sat-
isfying (5.21) and therefore this defines a Markov diffusion process with generator
(5.17).

The uniqueness can proved by determining all joint moments of the form

(5.23) Ep((p(t1)k1 . . . (p(t`))
k`), 0 ≤ t1 < t2 < · · · < t`, ki ∈ N

by solving a closed system of differential equation. It can also be proved using
duality and this will be done in detail below (Chapter 7) in a more general case.)

We now give an illustrative application of the diffusion approximation, namely
the calculation of expected fixation times.

Corollary 5.3 (Expected fixation time.) Let τ := inf{t : p(t) ∈ {0, 1}} denote
the fixation time of the diffusion process. Then

Ep[τ ] = f(p) = −[p log p+ (1− p) log(1− p)].
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Proof. Let f ∈ C2([0, 1]), f(0) = f(1) = 0. Let g(p) :=
∫∞

0
Tsf(p)ds, and

note that as f ↑ 1(0,1) this converges to the expected time spent in (0, 1). Since
p(t)→ {0, 1} as t→∞, a.s., we can show that

G

(∫ t

0

Tsf(p)ds

)
=

∫ t

0

GTsf(p)ds = Ttf(p)− f(p)→ 0− f(p) as t→∞,

that is,

Gg(p) = −f(p)

where G is given by (5.17).
Applying this to a sequence of C2 functions increasing to 1(0,1) we get

Ep(τ) =

∫ ∞
0

Pp(τ > t)dt

=

∫ ∞
0

Tt1(0,1)(p)dt

= g(p)

We then obtain g(p) by solving the differential equation Gg(p) = −1 with bound-
ary conditions g(0) = g(1) = 0 to obtain

Ep[τ ] = g(p) = −[p log p+ (1− p) log(1− p)].

Let τN denote the fixation time for N−1X[Nt]. We want to show that

(5.24) EXN0
N

[τN ]→ Ep0 [τ ] if
XN

0

N
→ p and N →∞.

However note that τ is not a continuous function on D([0,∞), [0, 1]). The weak
convergence can be proved for τ ε = inf{t : p(t) 6∈ (ε, 1− ε)} (because there is no
“slowing down” here). To complete the proof it can be verified that for δ > 0

(5.25) lim
ε→0

lim sup
N→∞

P (|τ εN − τN | > δ) = 0

(see Ethier and Kurtz, [225], Chapt. 10, Theorem 2.4).

2-allele Wright-Fisher with mutation

For each N consider a Fisher-Wright population of size MN and with mutation
rates m12 = u

N
A1 → A2 and m21 = v

N
A2 → A1.

In this case XN
n+1 is Binomial(MN , pn) with

(5.26) pn = (1− u

N
)
XN
n

MN

+
v

N
(1− XN

n

MN

).
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We now consider

(5.27) pN(t) =
1

MN

XbNtc.

If we assume that

(5.28) γ = lim
N→∞

N

MN

,

then the diffusion approximation is given by the diffusion process pt with gener-
ator

(5.29) Gf(p) =
γ

2
p(1− p) ∂

2

∂p2
+ [−up+ v(1− p)] ∂

∂p
.

In this case the domain of the generator involves boundary conditions at 0 and
1 (see [225], Chap. 8, Theorem 1.1) but we will not need this.

Remark 5.4 Note that the diffusion coefficient is proportional to the inverse pop-
ulation size. Below for more complex models we frequently think of the diffusion
coefficient in terms of inverse effective population size.

Error estimates

Consider a haploid Wright-Fisher population of size M with mutation rates m12 =
u, m21 = v.

Let p
(M,u,v)
t denote the diffusion process with generator (5.29) with γ = 1

M
.

Then if α, β ≥ 0, the law of

(5.30) {Z(α,β)
t }t≥0 := p

(M, α
M
, β
M

)
t

is independent of M and is a Wright-Fisher diffusion with generator

(5.31) Gf(p) =
γ

2
p(1− p) ∂

2

∂p2
+ [−αp+ β(1− p)] ∂

∂p
.

The assumption of mutation rates of order O( 1
N

) corresponds to the case in
which both mutation and genetic drift are of the same order and appear in the
limit as population sizes goes to ∞. Other only one of the two mechanisms
appears in the limit as N →∞.

On the other hand one can consider the diffusion process as an approximation
to the finite population model. Ethier and Norman ([228]) obtained an estimate
of the error due to the diffusion approximation in the calculation of the expected
value of a smooth function of the nth generation allelic frequency.
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To formulate their result consider the Wright-Fisher Markov chain model

{XM,u,v)
n } with population size M and one-step mutation probabilities m12 =

u, m21 = v and p
(M,u,v)
t the Wright-Fisher diffusion with generator (5.29) with

γ = 1
M

.

Theorem 5.5 (Ethier and Norman [228]) Assume that f ∈ C6([0, 1]). Then for
n ∈ N0,

(5.32)

|Ex(f(X(M,u,v)
n )− Ex(f(p(M,u,v)

n )|

≤ max(u, v)

2
· ‖f (1)‖+

1

M

(
1

8
‖f (2)‖+

1

216
√

3
‖f (3)‖

)
+

9 max(u2, v2)

2

(
6∑
j=1

‖f (j)‖

)
+

7

16M2

6∑
j=2

‖f (j)‖

where ‖f (j)‖ is the sup of the jth derivative of f .

We do not include a proof but sketch the main idea. Let

(5.33) (Snf)(x) := Ex[f(X(M,u,v)
n )],

(5.34) (Ttf)(x) := Ex[f(p
(M,u,v)
t )].

If g ∈ C6
b ([0,∞)), then we have the Taylor expansions

(5.35) (T1g)(x) = g(x) + (Gg)(x) +
G2g(x)

2
+ ω2

‖G3g‖
6

, |ω2| ≤ 1

and

(5.36)

(S1g)(x) = g(x)+
5∑
j=1

Ex[(X
(M,u,v)
1 −x)j]

g(j)(x)

j!
+ω1Ex[(X

(M,u,v)
1 −x)6]

‖g(6)‖
6!

, |ω1| ≤ 1.

We then obtain

(5.37) ‖S1g − T1g‖M ≤
6∑
j=1

γj‖g(j)‖

for some constants γj.
The proof is then completed using the inequality

(5.38) ‖Snf − Tnf‖M ≤
n−1∑
k=0

‖(S1 − T1)Tk‖M

where ‖ · ‖M is the sup norm on { j
M

: j = 1, . . . ,M}.
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5.3.2 K-allele Wright-Fisher Diffusion

Now consider the K-allele Wright-Fisher Markov chain {X2N
k }k∈N with 2N ga-

metes present in each generation and assume that the mutation rates and fitnesses
satisfy

(5.39) mij =
qij
2N

, i 6= j, mii = 1− m

N
, m =

∑
j

qij

(5.40) Vij = 1 +
σij
2N

+O(
1

N2
).

We now consider the Markov process with state space

(5.41) ∆K−1 := {(p1, . . . , pK) : pi ≥ 0,
K∑
i=1

pi = 1}.

defined by

(5.42) {p2N(t) : t ≥ 0} ≡ { 1

2N
X2N

[2Nt], t ≥ 0}.

Theorem 5.6 Assume that 2N−1X2N
0 → p as N →∞ in ∆K−1.

Then the laws of the càdlàg processes {pN(t) := 1
2N
X2N
t }t≥0 are tight and for

any limit point and function f(p) = f(p1, . . . , pK−1) ∈ C2(∆K−1),

(5.43) Mf (t) := f(p(t))−
∫ t

0

GKf(p(s))ds is a martingale

where

GKf(p)(5.44)

=
1

2

K−1∑
i,j=1

pi(δij − pj)
∂2f(p)

∂pi∂pj

+
K−1∑
i=1

[(
m(

K∑
j=1,j 6=i

qjipj − pi

)
+ pi

(
K∑
j=1

σijpj −
K∑
k,`

σk`pkp`

)]
∂f(p)

∂pi
.

The martingale problem (5.43) has a unique solution which determines a Markov
diffusion process {p(t) : t ≥ 0} called the K-allele Wright-Fisher diffusion.

Proof. Following the pattern of the 2-allele neutral case the proof involves three
steps which we now sketch.

Step 1. The tightness of the probability laws PN of {p2N(·)} on D∆K−1
([0,∞))

can be proved using Aldous criterion.
Step 2. Proof that for any limit point of PN and i = 1, . . . , K
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Mi(t) := pi(t)− pi(0)−
∫ t

0

[
m

(
K∑
j=1

qjipj(s)− pi(s)

)
(5.45)

+pi(s)

(
K∑
j=1

σijpj(s)−
K∑
k,`

σk`pk(s)p`(s)

) ]
ds

is a martingale with quadratic covariation process

(5.46) 〈Mi,Mj〉t =
1

2

∫ t

0

pj(s)(δij − pi(s))ds

To verify this, let F k
2N

= σ{p2N
i ( `

2N
) : ` ≤ k, i = 1, . . . , K}. Then we have for

k ∈ N

(5.47)

E[p2N
i (

k + 1

2N
)− p2N

i (
k

2N
) | F k

2N
]

=
1

2N

[
m

(
K∑

j=1,j 6=i

qji
m
p2N
j (

k

2N
)− p2N

i (
k

2N
)

)

+

(
K∑
j=1

σijp
2N
j (

k

2N
)−

K∑
k,`=1

σk`p
2N
k (

k

2N
)p2N
` (

k

2N
)

)]

+ o(
1

2N
)

(5.48) Cov(p2N
i (

k + 1

2N
), p2N

j (
k + 1

2N
)|F k

2N
) =

p2N
i

2N
(
k

2N
)(δij − p2N

j (
k

2N
)) + o(

1

N
)

Remark 5.7 The Markov property for XN
n follows if in the resampling step the

{P sel,mut
ij } are in Hardy-Weinberg proportions which implies that the {pnext

i } are

(5.49) multinomial(2N, (psel,mut
1 , . . . , psel,mut

K )).

This is true without selection or with multiplicative selection Vij = ViVj (which
leads to haploid selection in the diffusion limit) but not in general. In the diffusion
limit this can sometimes be dealt with by the O( 1

N2 ) term in (5.40). In general
the diffusion limit result remains true but the argument is more subtle. The idea
is that the selection-mutation changes the allele frequencies more slowly than
the mechanism of Stages I and III which rapidly bring the frequencies to Hardy-
Weinberg equilibrium - see [225], Chap. 10, section 3.
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Then for each N and i

M2N
i (t) := p2N

i (t)− p2N
i (0)−

∫ t

0

[
m

(
K∑

j=1,j 6=i

qjip
2N
j (s)− p2N

i (s)

)
(5.50)

+p2N
i (s)

(
K∑
j=1

σijp
2N
j (s)−

K∑
k,`

σk`p
2N
k (s)p2N

` (s)

) ]
dsN + o(

1

N
)

is a martingale and for i, j = 1, . . . , K

E[(M2N
i (t2)−M2N

i (t1))(M2N
j (t2)−M2N

j (t1))](5.51)

=
1

2N
E

b2Nt2c∑
k=b2Nt1c

p2N
i (

k

2N
)(δij − p2N

j (
k

2N
)) + o(

1

N
).

Step 3. Proof that there exists a unique probability measure on C∆K−1
([0,∞))

such that (5.45) and (5.46) are satisfied.
Uniqueness can be proved in the neutral case, σ ≡ 0, by showing that moments

are obtained as unique solutions of a closed system of differential equations.

Remark 5.8 The uniqueness when σ is not zero follows from the dual represen-
tation developed in the next chapter.

5.4 Stationary measures

A special case of a theorem in Section 8.3 implies that if the matrix (qij) is
irreducible, then the Wright-Fisher diffusion is ergodic with unique stationary
distribution.

5.4.1 The Invariant Measure for the neutral K-alleles WF Diffusion

Consider the neutral K-type Wright-Fisher diffusion with type-independent mu-
tation (Kingman’s “house-of-cards” mutation model) with generator

GKf(p) =
1

2

K−1∑
i,j=1

pi(δij − pj)
∂2f(p)

∂pi∂pj
+
θ

2

K−1∑
i=1

(νi − pi)
∂f(p)

∂pi
.

where the type-independent mutation kernel is given by ν ∈ ∆k−1.
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Theorem 5.9 (Wright [615], Griffiths [280]) The Dirichlet distribution D(p1, . . . , pn)
on ∆K−1 with density

ΠK(dp) =
Γ(θ1 + · · ·+ θK)

Γ(θ1) . . .Γ(θK)
pθ1−1

1 . . . pθK−1
K dp1 . . . dpK−1

θj = θνj, ν ∈ P(1, . . . , K)

is a reversible stationary measure for the neutral K-alleles WF diffusion with
γ = 1.

In the case K = 2 this is the Beta distribution

(5.52)
Γ(θ)

Γ(θ1)Γ(θ2)
xθ1−1

1 (1− x1)θ2−1dx1.

Proof. (cf. [232]) Reversibility and stationarity means that when ΠK is
the initial distribution, then {p(t) : 0 ≤ t ≤ t0} has the same distribution as
{p(t0 − t) : 0 ≤ t ≤ t0}. In terms of the strongly continuous semigroup {T (t)}
on C(∆K−1) generated by G a necessary and sufficient condition (see Fukushima
and Stroock (1986) [259]) for reversibility with respect to ΠK is that∫

g T (t) fdΠK =

∫
f T (t) gdΠK ∀ f, g ∈ C(∆K−1), t ≥ 0

or equivalently that∫
gGfdΠK =

∫
fGgdΠK ∀ f, g ∈ D(G)

or for f, g in a core for G (see Appendix I).
Since the space of polynomials in p1, . . . , pK is a core for G it suffices by

linearity to show that∫
gGfdΠ =

∫
fGgdΠ ∀ f = fα, g = fβ

where fα = pα1
1 . . . pαKK . Let |α| =

∑
αi.

Then∫
fβGfαdΠK

=
1

2

∫
[
K∑
i=1

αi(αi + θi − 1)fα+β−ei − |α|(|α|+
K∑
i=1

θi − 1)fα+β]dΠK

=
1

2

{
K∑
i=1

αi(αi + θi − 1)

αi + βi + θi − 1
− |α|(|α|+

∑
θi − 1)

|α|+ |β|+
∑
θi − 1

}

· Γ(α1 + β1 + θ1) . . .Γ(αK + βK + θK)

Γ(|α|+ |β|+
∑
θi − 1)

Γ(
∑
θi)

Γ(θ1) . . .Γ(θK)
.
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To show that this is symmetric in α, β, let h(α, β) denote the expression within
{...} above. Then

h(α, β)− h(β, α)

=
∑ α2

i − β2
i + (αi − βi)(θi − 1)

αi + βi + θi − 1
− |α|

2 − |β|2 + (|α| − |β|)(
∑
θi − 1)

|α|+ |β|+
∑
θi − 1

=
∑

(αi − βi)− (|α| − |β|)
= 0

Corollary 5.10 Consider the mixed moments:

mk1,...kK =

∫
. . .

∫
∆K−1

pk1
1 . . . pkKK ΠK(dp)

Then

mk1,...kK =
Γ(θ1) . . .Γ(θK)

Γ(θ1 + · · ·+ θK)

Γ(θ1 + · · ·+ θK + k1 + · · ·+ kK))

Γ(θ1 + k1) . . .Γ(θK + kK)
.

Stationary measure with selection

If selection (as in (5.44) is added then the stationary distribution is given by the
“Gibbs-like” distribution

(5.53) Πσ(dp) = C exp

(
K∑

i,j=1

σijpipj

)
ΠK(dp1 . . . dpK−1)

and this is reversible. (This is a special case of a result that will be proved in a
later section.)

5.4.2 Convergence of stationary measures of {pN}N∈N

It is of interest to consider the convergence of the stationary measures of the
Wright-Fisher Markov chains to (5.53). A standard argument applied to the
Wright-Fisher model is as follows.

Theorem 5.11 Convergence of Stationary Measures. Assume that the diffusion
limit, p(t), has a unique invariant measure, ν and that νN is an invariant measure
for pN(t). Then

(5.54) νN =⇒ ν as N →∞.
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Proof. Denote by {Tt}t≥0 the semigroup of the Wright-Fisher diffusion. Since
the state space is compact, the space of probability measure is compact. and
therefore the sequence νN is tight M1(∆K−1). Given a limit point ν̃ and a
subsequence νN ′ that converges weakly to ν̃ ∈ M1(∆K−1) it follows that for
f ∈ C(∆K−1),∫

T (t)fdν̃ = lim
N ′→∞

∫
T (t)fdνN ′ (by νN ′ =⇒ ν)

= lim
N ′→∞

∫
TN ′(2N

′t)fdνN ′ (by pN =⇒ p)

= lim
N ′→∞

∫
fdνN ′ (by inv. of νN ′)

=

∫
fdν̃ (by νN ′ =⇒ ν̃).

Therefore ν̃ is invariant for {T (t)} and hence ν̃ = ν by assumption of the unique-
ness of the invariant measure for p(t). That is, any limit points of {νN} coincides
with ν and therefore νN =⇒ ν.

Properties of the Dirichlet Distribution

1. Consistency under merging of types.
Under D(θ1, . . . , θn), the distribution of (X1, . . . , Xk, 1− Σk

i=1Xi) is

D(θ1, . . . , θk, θk+1 + · · ·+ θn)

and the distribution of Xk
1−Σk−1

i=1 Xi
= Xk

ΣKi=kXi
is Beta(θk,Σ

K
i=k+1θi).

2. Bayes posterior under random sampling
Consider the n-dimensional Dirichlet distribution, D(α) with parameters (α1, . . . , αn).

Assume that some phenomena is described by a random probability vector p =
(p1, . . . , pn). Let D(α) be the “prior distribution of the vector p. Now let us
assume that we take a sample and observe that Ni of the outcome are i. Now
compute the posterior distribution of p given the observations N = (N1, . . . , Nn)
as follows: Using properties of the Dirichlet distribution we can show that it is

P (p ∈ dx|N) =
1

Z

xα1
1 . . . xαnn xN1

1 . . . xNnn∫
xα1

1 . . . xαnn xN1
1 . . . xNnn dx1 . . . dxn

=
1

Z ′
x

(α1+N1)
1 . . . x(αn+Nn)

n .

That is,

(5.55) P (p ∈ ·|N) is D(α1 +N1, . . . , αn +Nn).



Chapter 18

Appendix III: Markov Processes

18.1 Operator semigroups

See Ethier-Kurtz, [222] Chap.1.

Consider a strongly continuous semigroup {Tt} with generator G and domain
D(G). A subset D0 ⊂ D(G) is a core if the closure of G|D0 equals G. If D0 is
dense and Tt : D0 → D0 for all t, then it is a core.

Theorem 18.1 (Kurtz semigroup convergence Theorem [222], Chap. 1, Theo-
rem 6.5) Let L,Ln be Banach spaces and πn : L→ Ln is a bounded linear mapping
and supn ‖πn‖ <∞. We say fn ∈ Ln → f ∈ L if limn→∞ ‖fn − πnf‖ = 0.

For n ∈ N let Tn be a contraction on a Banach space Ln, let εn > 0, limn→∞ εn =
0. Let {T (t)} be a strongly continuous contraction semigroup on L with generator
A and let D be a core for A. Then the following are equivalent:

(a) For each f ∈ L, T
bt/εnc
n πnf → T (t)f, for all t ≥ 0, uniformly on bounded

intervals.

(b) For each f ∈ D there existsfn ∈ Ln such that fn → F and Anfn → Af .

Theorem 18.2 [222] Chap. 4, Theorem 2.5.
Let E be locally compact and separable. For n = 1, 2, . . . let {Tn(t)} be a Feller
semigroup on C0(E) and suppose that Xn is a Markov process with semigroup
{Tn(t)} and sample paths in DE([0,∞)). Suppose that {T (t)} is a Feller semi-
group on C0(E) such that for each f ∈ C0(E)

(18.1) lim
n→∞

Tn(t)f = T (t)f, t ≥ 0.

If {Xn(0)} has limiting distribution ν ∈ P(E), then there is a Markov process X
correspondng to {T (t)} with initial distribution ν and sample paths in DE([0,∞))
with initial distribution ν and sample paths in DE([0,∞)) and Xn ⇒ X.

355
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17.4 Topologies on path spaces

Definition 17.9 Let µi, µ ∈ Mf . Then (µn)n∈N converges weakly to µ as n →
∞, denoted µn ⇒ µ iff and only is

(17.7)

∫
fdµn=⇒

n→∞

∫
fdµ ∀ f ∈ Cb(E)

Given a Polish space (E, d) we consider the space CE([0,∞)) with the metric

(17.8) d̃(f, g) =
∞∑
n=1

2−n sup
0≤t≤n

|f(t)− g(t)|.

Then (CE([0,∞), d̃) is also a Polish space. To prove weak convergence in P((CE([0,∞), d̃))
it suffices to prove tightness and the convergence of the finite dimensional distri-
butions.

Similarly the space DE([0,∞) of càdlàg functions from [0,∞) to E with the

Skorohod metric d̃ is a Polish space where

(17.9) d̃(f, g) = inf
λ∈Λ

(
γ(λ) +

∫ ∞
0

e−u
(

1 ∧ sup
t
d(f(t ∧ u), g(t ∧ u))

))
where Λ is the set of continuous, strictly increasing functions on [0,∞) and for
λ ∈ Λ,

(17.10) γ(λ) = 1 +

(
sup
t
|t− λ(t)| ∨ sup

s 6=t
| log(λ(s)− λ(t))

s− t
|
)
.

Theorem 17.10 (Ethier-Kurtz) (Ch. 3, Theorem 10.2) Let Xn and X be pro-
cesses with sample paths in DE([0,∞) and Xn ⇒ X. Then X is a.s. continuous
if and only if J(Xn)⇒ 0 where

(17.11) J(x) =

∫ ∞
0

e−u[ sup
0≤t≤u

d(X(t), x(t−))].

17.4.1 Sufficient conditions for tightness

Theorem 17.11 (Aldous (1978)) Let {Pn} be a sequence of probability measures
on D([0,∞),R) such that

• for each fixed t, Pn ◦X−1
t is tight in R,

• given stopping times τn bounded by T <∞ and δn ↓ 0 as n→∞

(17.12) lim
n→∞

Pn(|Xτn+δn −Xτn| > ε) = 0,

or

APPENDIX FOR LECTURE 6
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• ∀ η > 0 ∃δ, n0 such that

(17.13) sup
n≥n0

sup
θ∈[0,δ]

Pn(|Xτn+θ −Xτn| > ε) ≤ η.

Then {Pn} are tight.

17.4.2 The Joffe-Métivier criteria for tightness of D-semimartingales

We recall the Joffe Métivier criterion ([352]) for tightness of locally square inte-
grable processes.

A càdlàg adapted process X, defined on (Ω,F ,Ft, P ) with values in R is
called a D-semimartingale if there exists a càdlàg function A(t), a linear subspace
D(L) ⊂ C(R) and a mapping L : (D(L)×R× [0,∞)×Ω)→ R with the following
properties:

1. for every (x, t, ω) ∈ R× [0,∞)×Ω the mapping φ→ L(φ, x, t, ω) is a linear
functional on D(L) and L(φ, ·, t, ω) ∈ D(L),

2. for every φ ∈ D(L), (x, t, ω) → L(φ, x, t, ω) is B(R)× P-measurable, where
P is the predictable σ-algebra on [0,∞)× Ω, (P is generated by sets of the
form (s, t]× F where F ∈ Fs and s, t are arbitrary)

3. for every φ ∈ D(L) the process Mφ defined by

(17.14) Mφ(t, ω) := φ(Xt(ω)− φ(X0(ω))−
∫ t

0

L(φ,Xs−(ω), s, ω)dAs,

is a locally square integrable martingale on (Ω,F ,Ft, P ),

4. the functions ψ(x) := x and ψ2 belong to D(L).

The functions

(17.15) β(x, t, ω) := L(ψ, x, t, ω)

(17.16) α(x, t, ω) := L((ψ)2, x, t, ω)− 2xβ(x, t, ω)

are called the local characteristics of the first and second order.

Theorem 17.12 Let Xm = (Ωm,Fm,FMt , Pm) be a sequence of D-semimartingales
with common D(L) and associated operators Lm, functions Am, αm, βm. Then the
sequence {Xm : m ∈ N} is tight in DR([0,∞) provided the following conditions
are satisfied:

1. supmE|Xm
0 |2 <∞,
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2. there is a K > 0 and a sequence of positive adapted processes {{Cm
t : t ≥ 0} on Ωm}m∈N

such that for every m ∈ N, x ∈ R, ω ∈ Ωm,

(17.17) |βm(x, t, ω)|2 + αm(x, t, ω) ≤ K(Cm
t (ω) + x2)

and for every T > 0,

(17.18) sup
m

sup
t∈[0,T ]

E|Cm
t | <∞, and lim

k→∞
sup
m
Pm( sup

t∈[0,T ]

Cm
t ≥ k) = 0,

3. there exists a positive function γ on [0,∞) and a decreasing sequence of
numbers (δm) such that limt→0 γ(t) = 0, limm→∞ δm = 0 and for all 0 < s < t
and all m,

(17.19) (Am(t)− Am(s)) ≤ γ(t− s) + δm.

4. if we set

(17.20) Mm
t := Xm

t −Xm
0 −

∫ t

0

βm(Xm
s−, s, ·)dAms ,

then for each T > 0 there is a constant KT and m0 such that for all m ≥ m0,
then

(17.21) E( sup
t∈[0,T ]

|Xm
t |2) ≤ KT (1 + E|Xm

0 |2),

and

(17.22) E( sup
t∈[0,T ]

|Mm
t |2) ≤ KT (1 + E|Xm

0 |2),

Corollary 17.13

Assume that for T > 0 there is a constant KT such that

(17.23) sup
m

sup
t≤T,x∈R

(|αm(t, x)|+ |βm(t, x)|) ≤ KT , a.s.

(17.24)
∑
m

(Am(t)− Am(s)) ≤ KT (t− s) if 0 ≤ s ≤ t ≤ T,

and

(17.25) sup
m
E|Xm

0 |2 <∞,

and Mm
t is a square integrable martingale with supmE(|Mm

T |2) ≤ KT . The the
{Xm : m ∈ N} are tight in DR([0,∞).
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Criteria for continuous processes

Now consider the special case of probability measures on C([0,∞),Rd). This
criterion is concerned with a collection (X(n)(t))t≥0 of semimartingales with values
in Rd with continuous paths. First observe that by forming

(17.26) (< X(n)(t), λ >)t≥0 , λ ∈ Rd

we obtain R-valued semi-martingales. If for every λ ∈ Rd the laws of these
projections are tight on C([0,∞),R) then this is true for {[L[(X(n)(t))t≥0], n ∈ N}.
The tightness criterion for R-valued semimartingales is in terms of the so-called
local characteristics of the semimartingales.

For Itô processes the local characteristics can be calculated directly from the
coefficients. For example, if we have a sequence of semimartingales Xn that are
also a Markov processes with generators:

(17.27) L(n)f =
( d∑
i=1

ani (x)
∂

∂xi
+

d∑
i=1

d∑
j=1

bni,j(x)
∂2

∂xi∂xj

)
f

then the local characteristics are given by

(17.28) an = (ani )i=1,··· ,d, bn = (bni,j)i,j,=1,··· ,d.

The Joffe-Métivier criterion implies that if

sup
n

sup
0≤t≤T

E[(|an(X(n)(t)|+ |bn(X(n)(t)|)2] <∞,(17.29)

lim
k→∞

sup
n
P ( sup

0≤t≤T
(|an(X(n))(t)|+ |bn(X(n))(t)|) ≥ k) = 0(17.30)

then {L[(X(n)(t))t≥0], n ∈ N} are tight in C([0,∞),R). See [352] for details.

Theorem 17.14 (Ethier-Kurtz [225] Chapt. 3, Theorem 10.2) Let

(17.31) J(x) =

∫ ∞
0

e−u[J(x, u) ∧ 1]du, J(x, u) = sup
0≤t≤u

d(x(t), x(t−)).

Assume that a sequence of processes Xn ⇒ X in DE([0,∞)). Then X is a.s.
continuous if and only if J(Xn)⇒ 0.

17.4.3 Tightness of measure-valued processes

Lemma 17.15 (Tightness Lemma).
(a) Let E be a compact metric space and {Pn} a sequence of probability measures
on D([0,∞),M1(E)). Then {Pn} is compact if and only if there exists a linear
separating set D ⊂ C(E) such that t →

∫
f(x)Xt(ω, dx) is relatively compact in

D([0,∞), [−‖f‖, ‖f‖]) for each f ∈ D.
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(b) Assume that {Pn} is a family of probability measures on D([0,∞), [−K,K])
such that for 0 ≤ t ≤ T , there are bounded predictable processes {vi(·) : i = 1, 2}
such that for each n

Mi,n(t) := x(ω, t)i −
∫ t

0

vi,n(ω, s)ds, i = 1, 2

are Pn-square integrable martingales with

sup
n
En(sup

s
(|v2,n(s)|+ |v1,n(s)|)) <∞.

Then the family {Pn} is tight.
(c) In (b) we can replace the i = 2 condition with: for any ε > 0 there exists f
and vf,n such that

sup
[−K,K]

|fε(x)− x2| < ε

and

Mf,n(t) := fε(x(ω, t))−
∫ t

0

vfε,n(ω, s)ds

sup
n
En(sup

s
(|vfε,n(s)|) <∞.

Proof. (a) See e.g. Dawson, [139] Section 3.6.
(b) Given stopping times τn and δn ↓ 0 as n→∞.

En
[
(x(τn + δn)− x(τn))2

]
= {En[x2(τn + δn)− x2(τn)]− 2En[x(τn)(x(τn + δn)− xn(τn))]}

≤ En[

∫ τn+δn

τn

|v2,n(s)|ds+ 2K

∫ τn+δn

τn

|v1,n(s)|ds]

≤ δn sup
n
En(sup

s
(|v2,n(s)|+ |v1,n(s)|))

→ 0 as δn → 0.

The result then follows by Aldous’ condition.
(c)

En
[
(x(τn + δn)− x(τn))2

]
= {En[x2(τn + δn)− x2(τn)]− 2En[x(τn)(x(τn + δn)− xn(τn))]}

≤ En(f(x(τn + δn))− f(x(τn))) + 2K

∫ τn+δn

τn

|v1,n(s)|ds] + 2ε

≤ En[

∫ τn+δn

τn

|vfε,n(s)|ds+ 2K

∫ τn+δn

τn

|v1,n(s)|ds] + 2ε

≤ δn sup
n
En(sup

s
(|vfε,n(s)|+ |v1,n(s)|)) + 2ε
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Hence for any ε > 0

lim
δn→0

sup
n
En
[
(x(τn + δn)− x(τn))2

]
≤ lim

n→∞
δn sup

n
En(sup

s
(|vfε,n(s)|+ |v1,n(s)|)) + 2ε

= 2ε.

and the result again follows from Aldous criterion.

Remark 17.16 These results can be also used to prove tightness in the case of
non-compact E. However in this case an additional step is required, namely to
show that for ε > 0 and T > 0 there exists a compact subset KT,ε ⊂ E such that

Pn[D([0, T ], KT,ε)] > 1− ε ∀ n.

Remark 17.17 Note that if Pn is a tight sequence of probability measures on
D([0, T ],R) such that Pn(sup0≤s≤T |x(s) − x(s−)| ≤ δn) = 1 and δn → 0 as n
→∞, then for any limit point P∞, P∞(C([0, T ],R)) = 1.

17.5 The Gromov-Hausdorff metric on the space of com-
pact metric spaces

Let E be a metric space and B1, B2 two subsets. Then the Hausdorff distance is
defined by

(17.32) dH(K1, K2) = inf{ε ≥ 0 : K1 ⊂ Vε(K2), K2 ⊂ Vε(K1)}

where Vε(K) denotes the ε-neighbourhood of K. This defines a pseudometric,
dH(B1, B2) = 0 iff they have the same closures.

If X and Y are two compact metric spaces. The Gromov-Hausdorff metric
dGH(X, Y ) is defined to be the infimum of all numbers dH(f(X), g(Y )) for all
metric spaces M and all isometric embeddings f : X → M and g : Y → M and
where dHaus denotes Hausdorff distance between subsets in M. dGH is a pseudo-
metric with dGH(K1, K2) = 0 iff they are isometric.

Now let (K, dGH) denote the class of compact metric spaces (modulo isometry)
with the Gromov-Hausdorff metric. Then (K, dGH) is complete.

See Gromov [289] and Evans [235] for detailed expositions on this topic.

17.5.1 Metric measure spaces

The notion of metric measure space was developed by Gromov [289] (called mm
spaces there). It is given by a triple (X, r, µ) where (X, r) is a metric space such
that (supp(µ), r) is complete and separable and µ ∈ P(X) is a probability measure
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on (X, r). Let M be the space of equivalence classes of metric measure spaces
(whose elements are not themselves metric spaces - see remark (2.2(ii)) in[287])
with equivalence in the sense of measure-preserving isometries. The distance
matrix map is defined for n ≤ ∞

(17.33) Xn → R
(

n
2

)

+ , ((xi)i=1,...,n)→ (r(xi, xj))1≤i<j≤n

and we denote by R(X, r) the map that sends a sequence of points to its infinite
distance matrix.

Then the distance matrix distribution of (X, r, µ) (representative of equiva-
lence class) is defined by

(17.34) ν(X,r,µ) := R(X,r) − pushforward of µ⊗N ∈ P(R

 N
2


+ ).

Since this depends only on the equivalence class it defined the mapping κ→ νκ

for κ ∈ M. Gromov [289] (Section 31
2
.5) proved that a metric measure space is

characterized by its distance matrix distribution.
Greven, Pfaffelhuber and Winter (2008) [287] introduced the Gromov-weak

topology. In this topology a sequence {χn} converges Gromov-weakly to χ in M
if and only if Φ(χn) converges to Φ(χ) in R for all polynomial in Π.

In [287], Theorem 1, they proved that M equipped with the Gromov-weak
topology is Polish.

An important subclass is the set of ultrametric measure spaces given by the
closed subset of M

(17.35) U := { u∈M : u is ultra-metric}.


