
1 Lecture 1

References

[Bry07] David Brydges. Lectures on the renormalisation group. Link, To
appear, PCMI Lecture Series published by AMS, 2007. See page 17,
appendix on Greens functions, for decay of Greens functions.

[BF82] Jean Bricmont and Jean-Raymond Fontaine. Perturbation about the
mean field critical point. Comm. Math. Phys., 86(3):337–362, 1982.
With an appendix by Eugene Speer. For discussion of Kac limit and
Ising model.

[Kac59] M. Kac. On the partition function of one dimensional gas. Phys.
Fluids, 2:8–12, 1959.

[Sie60] A.J.F. Siegert. Partition functions as averages of functionals of Gaus-
sian random functions. Physica, 26:530–535, 1960.

[Sal99] Manfred Salmhofer. Renormalization. Texts and Monographs in
Physics. Springer-Verlag, Berlin, 1999. An introduction. For Feyn-
man graphs and expansions.

2 Lecture 2

References

[Sal99] (Defined above). For logarithm equals sum of connected graphs and
Feynman expansions.
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