Outline

* Phase line - how to extract information from an equation
without solving it:

- steady states,
- stabillity,

- general “shape” of solutions.

e Equations for motion at low Reynolds number.
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e \Where do inflection points occur?
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dx
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e Either Ccli—f =0 or f'(z(t)) =0.

e The former corresponds to steady states (so not
inflection points).




Phase line

e \Where do inflection points occur?

—x—z? = :
E_x f(x)

dx

/(ZC)E = (1 —2z)(x — z?).

e Either Z—f =0 or f'(z(t)) =0.

e The former corresponds to steady states (so not
inflection points).

e The latter gives inflection points. This means
maxima of f(x) tell you the value of = at which
inflections points of x(t) occur.
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¢ Dimensional analysis to get drag force in inertial limit.
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® The drag force should depend on the object’s size L (m)
and velocity v (m s), and the fluid’s density p (g m™) and
viscosity 17 (g m-'s™).

Farag = —CppL=v|v|.

e DE for high Reynolds number goes here...

® [his applies when the energy required to move
fluid is much greater than the energy lost due to
friction within the fluid. What about when friction is
significant?

e ('p could account for this case provided it
depends on viscosity.
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e ('p must be dimensionless. If viscosity, 71, is In there, we must
deal with the extra units (g m's™).

e Construct a dimensionless quantity...

Lv
e Reynolds number: Re = p_
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Drag on a sphere

C
Cp(Re) = — R—; + s
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Firag = —Cp(Re)pLv|v|
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Straight line; log-log plot (omitted in class)

Suppose v and w are the log-log plot
coordinates and the curve Is a line:

Firag = —Cp(Re)pLv|v|

— —CO 77 IOLQU‘U‘ — _COULU
pL|v|

Stokes predicted this; in particular, for a
sphere, Cy = 67 .
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Aristotle’s bad rap

Stokes said: Farag = —pv.
Aristotle said: pv = Fhet,
Newton said: ma = Fjet .
Newton and Stokes would say:

ma = —uv = Fother.

When mis really small, 0 = —puv + Foiner

which is essentially what Aristotle said.




Freshman physics at low Reynolds Numlber

dx

ME = et ().

*\When the net force is a function of position, we
end up with a “first order differential equation”.

e Examples:

dx 1

@i = —J000)-.
dx . 1 kelechQQ .
dt " 72 JGE @
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