
Outline

•Phase line - how to extract information from an equation 
without solving it:

- steady states,

- stability,

- general “shape” of solutions.

•Equations for motion at low Reynolds number.



• Draw the phase plane and sketch several solutions for the 
differential equation dx

dt
= x − x

2
.

Phase line



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

dx

dt
= x − x

2
.

Phase line



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

dx

dt
= x − x

2
.

Phase line

x − x
2

= 0.



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

x − x
2

= 0.



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

x − x
2

= 0.

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

x − x
2

= 0.

f ′(x) = 1 − 2x, f ′(0) = 1 > 0, f ′(1) = −1 < 0.

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

x0 1

x − x
2

= 0.

f ′(x) = 1 − 2x, f ′(0) = 1 > 0, f ′(1) = −1 < 0.

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x − x
2

= 0.

f ′(x) = 1 − 2x, f ′(0) = 1 > 0, f ′(1) = −1 < 0.

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x − x
2

= 0.

f ′(x) = 1 − 2x, f ′(0) = 1 > 0, f ′(1) = −1 < 0.

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



• Draw the phase plane and sketch several solutions for the 
differential equation

• Steady states:

• Stability: 

dx

dt
= x − x

2
.

Phase line

f(x)

x0 1

x(t)

t

1

0

x − x
2

= 0.

f ′(x) = 1 − 2x,

Slope field

= f(x).



Phase line

• Where do inflection points occur?

f(x)

x0 1

x(t)

t

1

0



Phase line

• Where do inflection points occur?

dx

dt
= x − x

2
.= f(x).

f(x)

x0 1

x(t)

t

1

0



Phase line

• Where do inflection points occur?

dx

dt
= x − x

2
.= f(x).

d2x

dt2
=

f(x)

x0 1

x(t)

t

1

0



Phase line

• Where do inflection points occur?

dx

dt
= x − x

2
.= f(x).

d2x

dt2
= f ′(x)

dx

dt

f(x)

x0 1

x(t)

t

1

0



Phase line

• Where do inflection points occur?

dx

dt
= x − x

2
.= f(x).

d2x

dt2
= f ′(x)

dx

dt
= (1 − 2x)(x − x

2).

f(x)

x0 1

x(t)

t

1

0



Phase line

• Where do inflection points occur?

• Either                or                     . 

dx

dt
= x − x

2
.= f(x).

d2x

dt2
= f ′(x)

dx

dt
= (1 − 2x)(x − x

2).

dx

dt
= 0 f ′(x(t)) = 0

f(x)

x0 1

x(t)

t

1

0



Phase line

• Where do inflection points occur?

• Either                or                     . 

• The former corresponds to steady states (so not 
inflection points). 

dx

dt
= x − x

2
.= f(x).

d2x

dt2
= f ′(x)

dx

dt
= (1 − 2x)(x − x

2).

dx

dt
= 0 f ′(x(t)) = 0

f(x)

x0 1

x(t)

t

1

0



Phase line

• Where do inflection points occur?

• Either                or                     . 

• The former corresponds to steady states (so not 
inflection points). 

• The latter gives inflection points. This means 
maxima of         tell you the value of     at which 
inflections points of        occur.
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• Dimensional analysis to get drag force in inertial limit.
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•This applies when the energy required to move 
fluid is much greater than the energy lost due to 
friction within the fluid. What about when friction is 
significant?

Fdrag = −CDρL2v|v|.

•        could account for this case provided it 
depends on viscosity.
CD

•DE for high Reynolds number goes here...
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Straight line; log-log plot (omitted in class)

Suppose v and w are the log-log plot 
coordinates and the curve is a line:

= −C0

η

ρL|v|
ρL2v|v| = −C0ηLv.

Fdrag = −CD(Re)ρL2v|v|

Stokes predicted this; in particular, for a 
sphere,              .C0 = 6π
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Aristotle’s bad rap

Fdrag = −µvStokes said: .

Aristotle said: µv = Fnet .

Newton said: ma = Fnet.

ma = −µv + Fother

Newton and Stokes would say:
.

which is essentially what Aristotle said.

When      is really small,m 0 = −µv + Fother



Freshman physics at low Reynolds Number

•When the net force is a function of position, we 
end up with a “first order differential equation”.

•Examples:

µ
dx

dt
= Fnet(x).

dx

dt
= −

1

µ
kspring x

dx

dt
= −

1

µ

kelecq1q2

x2
+ +


