Outline

- Phase line - how to extract information from an equation without solving it:
- steady states,
- stability,
- general "shape" of solutions.
- Equations for motion at low Reynolds number.

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}
$$

- Steady states:

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}
$$

- Steady states:

$$
x-x^{2}=0
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x, f^{\prime}(0)=1>0, f^{\prime}(1)=-1<0 .
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x, f^{\prime}(0)=1>0, f^{\prime}(1)=-1<0 .
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x, f^{\prime}(0)=1>0, f^{\prime}(1)=-1<0 .
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x, f^{\prime}(0)=1>0, f^{\prime}(1)=-1<0 .
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Draw the phase plane and sketch several solutions for the differential equation

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

- Steady states:

$$
x-x^{2}=0
$$

- Stability:

$$
f^{\prime}(x)=1-2 x,
$$

Phase line

- Where do inflection points occur?

Phase line

-Where do inflection points occur?

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

Phase line

- Where do inflection points occur?

$$
\frac{d x}{d t}=x-x^{2}=f(x)
$$

$\frac{d^{2} x}{d t^{2}}=$

Phase line

-Where do inflection points occur?

$$
\begin{aligned}
& \frac{d x}{d t}=x-x^{2}=f(x) \\
\frac{d^{2} x}{d t^{2}}= & f^{\prime}(x) \frac{d x}{d t}
\end{aligned}
$$

Phase line

- Where do inflection points occur?

$$
\begin{gathered}
\frac{d x}{d t}=x-x^{2}=f(x) . \\
\frac{d^{2} x}{d t^{2}}=f^{\prime}(x) \frac{d x}{d t}=(1-2 x)\left(x-x^{2}\right) .
\end{gathered}
$$

Phase line

-Where do inflection points occur?

$$
\begin{gathered}
\frac{d x}{d t}=x-x^{2}=f(x) \\
\frac{d^{2} x}{d t^{2}}=f^{\prime}(x) \frac{d x}{d t}=(1-2 x)\left(x-x^{2}\right)
\end{gathered}
$$

- Either $\frac{d x}{d t}=0$ or $f^{\prime}(x(t))=0$.

Phase line

- Where do inflection points occur?

$$
\begin{gathered}
\frac{d x}{d t}=x-x^{2}=f(x) \\
\frac{d^{2} x}{d t^{2}}=f^{\prime}(x) \frac{d x}{d t}=(1-2 x)\left(x-x^{2}\right)
\end{gathered}
$$

- Either $\frac{d x}{d t}=0$ or $f^{\prime}(x(t))=0$.
- The former corresponds to steady states (so not inflection points).

Phase line

- Where do inflection points occur?

$$
\begin{gathered}
\frac{d x}{d t}=x-x^{2}=f(x) \\
\frac{d^{2} x}{d t^{2}}=f^{\prime}(x) \frac{d x}{d t}=(1-2 x)\left(x-x^{2}\right)
\end{gathered}
$$

- Either $\frac{d x}{d t}=0$ or $f^{\prime}(x(t))=0$.
- The former corresponds to steady states (so not inflection points).
- The latter gives inflection points. This means maxima of $f(x)$ tell you the value of x at which inflections points of $x(t)$ occur.

Toward a drag equation

- What is the force require to move an object through a distance its own size?

Toward a drag equation

- What is the force require to move an object through a distance its own size?

$$
\begin{aligned}
L & \sim \mathrm{~m}, \\
v_{0} & \sim \mathrm{~m} \mathrm{~s}^{-1}, \\
\rho & \sim \mathrm{~g} \mathrm{~m}^{-3}, \\
\eta & \sim \mathrm{~g} \mathrm{~m}^{-1} \mathrm{~s}^{-1} .
\end{aligned}
$$

Toward a drag equation

- What is the force require to move an object through a distance its own size?

$$
\begin{aligned}
& L \sim \mathrm{~m}, \\
& \begin{array}{l}
L \sim \mathrm{~m} \mathrm{~s}^{-1}, \\
\rho \sim \mathrm{gm}^{-3}, \\
\eta \sim \mathrm{gm}^{-1} \mathrm{~s}^{-1} .
\end{array} \\
& L
\end{aligned}
$$

Toward a drag equation

- What is the force require to move an object through a distance its own size?

$$
\begin{aligned}
& \begin{array}{l}
L \sim \mathrm{~m}, \\
v_{0} \sim \mathrm{~m} \mathrm{~s}^{-1}, \\
\rho \sim \mathrm{~g} \mathrm{~m}^{-3}, \\
\eta \sim \mathrm{~g} \mathrm{~m}^{-1} \mathrm{~s}^{-1} .
\end{array} \\
& L
\end{aligned}
$$

Toward a drag equation

- What is the force require to move an object through a distance its own size?

$$
\begin{aligned}
L & \sim \mathrm{~m}, \\
v_{0} & \sim \mathrm{~m} \mathrm{~s}^{-1}, \\
\rho & \sim \mathrm{~g} \mathrm{~m}^{-3}, \\
\eta & \sim \mathrm{~g} \mathrm{~m}^{-1} \mathrm{~s}^{-1} .
\end{aligned}
$$

Toward a drag equation

- What is the force require to move an object through a distance its own size?

$$
\begin{aligned}
L & \sim \mathrm{~m}, \\
v_{0} & \sim \mathrm{~m} \mathrm{~s}^{-1}, \\
\rho & \sim \mathrm{~g} \mathrm{~m}^{-3}, \\
\eta & \sim \mathrm{~g} \mathrm{~m}^{-1} \mathrm{~s}^{-1} .
\end{aligned}
$$

Toward a drag equation

- What is the force require to move an object through a distance its own size?

- Dimensional analysis to get drag force in inertial limit.

Toward a drag equation

- The drag force should depend on the object's size L (m) and velocity $v\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$, and the fluid's density $\rho\left(\mathrm{g} \mathrm{m}^{-3}\right)$ and viscosity $\eta\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.

$$
F_{d r a g}=-C_{D} \rho L^{2} v|v|
$$

Toward a drag equation

- The drag force should depend on the object's size L (m) and velocity $v\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$, and the fluid's density $\rho\left(\mathrm{g} \mathrm{m}^{-3}\right)$ and viscosity $\eta\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.

$$
F_{d r a g}=-C_{D} \rho L^{2} v|v|
$$

-DE for high Reynolds number goes here...

Toward a drag equation

- The drag force should depend on the object's size L (m) and velocity $v\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$, and the fluid's density $\rho\left(\mathrm{g} \mathrm{m}^{-3}\right)$ and viscosity $\eta\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.

$$
F_{d r a g}=-C_{D} \rho L^{2} v|v|
$$

-DE for high Reynolds number goes here...

- This applies when the energy required to move fluid is much greater than the energy lost due to friction within the fluid. What about when friction is significant?

Toward a drag equation

- The drag force should depend on the object's size L (m) and velocity $v\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$, and the fluid's density $\rho\left(\mathrm{g} \mathrm{m}^{-3}\right)$ and viscosity $\eta\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.

$$
F_{d r a g}=-C_{D} \rho L^{2} v|v|
$$

-DE for high Reynolds number goes here...

- This applies when the energy required to move fluid is much greater than the energy lost due to friction within the fluid. What about when friction is significant?
- C_{D} could account for this case provided it depends on viscosity.

Toward a drag equation - a dimensionless quantity

- C_{D} must be dimensionless. If viscosity, η, is in there, we must deal with the extra units $\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.

Toward a drag equation - a dimensionless quantity

- C_{D} must be dimensionless. If viscosity, η, is in there, we must deal with the extra units $\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.
- Construct a dimensionless quantity...

Toward a drag equation - a dimensionless quantity

- C_{D} must be dimensionless. If viscosity, η, is in there, we must deal with the extra units $\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.
- Construct a dimensionless quantity...
- Reynolds number: $R e=\frac{\rho L v}{\eta}$.

Toward a drag equation - a dimensionless quantity

- C_{D} must be dimensionless. If viscosity, η, is in there, we must deal with the extra units $\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.
- Construct a dimensionless quantity...
- Reynolds number: $R e=\frac{\rho L v}{\eta}$.

$$
F_{d r a g}=-C_{D}(R e) \rho L^{2} v|v|
$$

Toward a drag equation - a dimensionless quantity

- C_{D} must be dimensionless. If viscosity, η, is in there, we must deal with the extra units $\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.
- Construct a dimensionless quantity...
- Reynolds number: $R e=\frac{\rho L v}{\eta}$.

$$
F_{d r a g}=-\left(\frac{C_{1}}{R e}+C_{2}\right) \rho L^{2} v|v|
$$

Toward a drag equation - a dimensionless quantity

- C_{D} must be dimensionless. If viscosity, η, is in there, we must deal with the extra units $\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.
- Construct a dimensionless quantity...
- Reynolds number: $R e=\frac{\rho L v}{\eta}$.

$$
\begin{aligned}
F_{d r a g} & =-\left(\frac{C_{1}}{R e}+C_{2}\right) \rho L^{2} v|v| \\
& =-\left(\frac{C_{1} \eta}{\rho L|v|}+C_{2}\right) \rho L^{2} v|v|
\end{aligned}
$$

Toward a drag equation - a dimensionless quantity

- C_{D} must be dimensionless. If viscosity, η, is in there, we must deal with the extra units $\left(\mathrm{g} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$.
- Construct a dimensionless quantity...
- Reynolds number: $R e=\frac{\rho L v}{\eta}$.

$$
\begin{aligned}
F_{d r a g} & =-\left(\frac{C_{1}}{R e}+C_{2}\right) \rho L^{2} v|v| \\
& =-\left(\frac{C_{1} \eta}{\rho L|v|}+C_{2}\right) \rho L^{2} v|v| \\
& =-C_{1} \eta L v-C_{2} \rho L^{2} v|v|
\end{aligned}
$$

Drag on a sphere

Drag on a sphere

Reynolds number

Drag on a sphere

Reynolds number

Drag on a sphere

Reynolds number

Straight line; log-log plot (omitted in class)

Suppose vand w are the log-log plot coordinates and the curve is a line:

$$
w=m v-b
$$

Straight line; log-log plot (omitted in class)

Suppose vand w are the log-log plot coordinates and the curve is a line:

$$
\begin{aligned}
w & =m v-b \\
\ln y & =m \ln x-b .
\end{aligned}
$$

Straight line; log-log plot (omitted in class)

Suppose v and w are the log-log plot coordinates and the curve is a line:

$$
\begin{aligned}
w & =m v-b \\
\ln y & =m \ln x-b \\
y & =\exp (m \ln x-b)
\end{aligned}
$$

Straight line; log-log plot (omitted in class)

Suppose v and w are the log-log plot coordinates and the curve is a line:

$$
\begin{aligned}
w & =m v-b . \\
\ln y & =m \ln x-b . \\
y & =\exp (m \ln x-b) \\
& =e^{\ln x^{m}} e^{-b}=c x^{m} .
\end{aligned}
$$

Straight line; log-log plot (omitted in class)

Suppose v and w are the log-log plot coordinates and the curve is a line:

$$
\begin{aligned}
w & =m v-b \\
\ln y & =m \ln x-b \\
y & =\exp (m \ln x-b) \\
& =e^{\ln x^{m}} e^{-b}=c x^{m}
\end{aligned}
$$

Because $\mathrm{m}=-1, \quad C_{D}(R e)=C_{0} R e^{-1}=C_{0} \frac{\eta}{\rho L|v|}$.

Straight line; log-log plot (omitted in class)

Suppose v and w are the log-log plot coordinates and the curve is a line:

$$
\begin{aligned}
F_{d r a g} & =-C_{D}(R e) \rho L^{2} v|v| \\
& =-C_{0} \frac{\eta}{\rho L|v|} \rho L^{2} v|v|=-C_{0} \eta L v .
\end{aligned}
$$

Because $\mathrm{m}=-1, \quad C_{D}(R e)=C_{0} R e^{-1}=C_{0} \frac{\eta}{\rho L|v|}$.

Straight line; log-log plot (omitted in class)

Suppose v and w are the log-log plot coordinates and the curve is a line:

$$
\begin{aligned}
F_{\text {drag }} & =-C_{D}(R e) \rho L^{2} v|v| \\
& =-C_{0} \frac{\eta}{\rho L|v|} \rho L^{2} v|v|=-C_{0} \eta L v .
\end{aligned}
$$

Stokes predicted this; in particular, for a sphere, $C_{0}=6 \pi$.

Aristotle's bad rap

Aristotle's bad rap

Stokes said:

$$
F_{d r a g}=-\mu v
$$

Aristotle's bad rap

Stokes said:
Aristotle said:

$$
F_{d r a g}=-\mu v
$$

$$
\mu v=F_{n e t}
$$

Aristotle's bad rap

Stokes said:
Aristotle said:
Newton said:

$$
F_{d r a g}=-\mu v
$$

$$
\mu v=F_{n e t} .
$$

$$
m a=F_{n e t} .
$$

Aristotle’s bad rap

Stokes said:
Aristotle said:
Newton said:

$$
F_{d r a g}=-\mu v
$$

$$
\mu v=F_{n e t} .
$$

$$
m a=F_{n e t} .
$$

Newton and Stokes would say:

$$
m a=-\mu v+F_{o t h e r} .
$$

Aristotle's bad rap

Stokes said:
Aristotle said:
Newton said:

$$
F_{d r a g}=-\mu v
$$

$$
\mu v=F_{n e t} .
$$

$$
m a=F_{n e t} .
$$

Newton and Stokes would say:

$$
m a=-\mu v+F_{\text {other }} .
$$

When m is really small, $0=-\mu v+F_{\text {other }}$
which is essentially what Aristotle said.

Freshman physics at low Reynolds Number

$$
\mu \frac{d x}{d t}=F_{n e t}(x) .
$$

-When the net force is a function of position, we end up with a "first order differential equation".
-Examples:

$$
\begin{aligned}
& \frac{d x}{d t}=-\frac{1}{\mu} k_{\text {spring }} x \\
& \frac{d x}{d t}=-\frac{1}{\mu} \frac{k_{\text {elec }} q_{1} q_{2}}{x^{2}}
\end{aligned}
$$

