MATHEMATICS: QUIZ - Curve Sketching

An outline of a complete solution to question 3.

For which values of c is the function $g(x)=\frac{x}{1+x^{2}}+c x$ increasing everywhere on the real line?

Solution:

In order to ensure that g is increasing everywhere, we must choose a value of c greater than the absolute maximum of $-f^{\prime}$ (where f is defined by $f(x)=\frac{x}{1+x^{2}}$. This works because for such a c, we know that $c>-f^{\prime}(x)$ for all values of x and so $g^{\prime}(x)=f^{\prime}(x)+c>0$ for all values of x.
Procedure:

1. Find local extrema of f^{\prime}.
2. Identify which extrema are minima using the second derivative test.
3. Find the value of $f^{\prime}\left(x_{\text {min }}\right)$ for each minimum.
4. Ensure there are no (negative) vertical asymptotes hiding in f^{\prime}. If there are any such asymptotes, there is no value of c that will work.
5. Check for horizontal asymptotes of f^{\prime} that may be below the lowest local minimum.
6. Check that $\lim _{x \rightarrow \pm \infty} f^{\prime}(x) \neq-\infty$. This would cause the same problem as a negative vertical asymptote.
7. Choose a value of c so that $-c$ is lower than the lowest local minimum and lower than any horizontal asymptotes.
