
Linearizing about a steady state - an example

Consider the system

dx

dt
= cos(x− y),

dy

dt
= sin(x+ y).

This system has steady states when x−y = π/2+nπ for any integer value of n and x+y = mπ for
any integer value of m. Because of periodicity, all steady states will look like one of the four steady
state associated with n = 0, 1 and m = 0, 1. To demonstrate how to linearize about a steady state,
I’ll consider the case for n = 1,m = 1. For these values, there is a steady at the intersection of the
lines x − y = 3π/2 and x + y = π, that is, at x = 5π/4, y = −π/4. To determine the stability of
this steady state, we must linearize cos(x− y) and sin(x+ y) about the point (5π/4,−π/4). Let’s
give the functions names for notational convenience; f(x, y) = cos(x− y), g(x, y) = sin(x+ y).

f(x, y) ≈ f(5π/4,−π/4) +
∂f

∂x
(5π/4,−π/4)(x− 5π/4) +

∂f

∂y
(5π/4,−π/4)(y + π/4).

Because (5π/4,−π/4) is a steady state, f(5π/4,−π/4) = 0. Next, recall that ∂f/∂x is the derivative
of f with respect to x while holding y constant. So ∂f/∂x = − sin(x−y). And ∂f/∂y = sin(x−y).
Next, we evaluate these at the point (5π/4,−π/4):

∂f

∂x
(5π/4,−π/4) = − sin(3π/2) = 1,

∂f

∂y
(5π/4,−π/4) = sin(3π/2) = −1.

Similarly, we need to calculate the partial derivatives of g(x, y); ∂g/∂x = cos(x+ y), ∂g/∂y =
cos(x+ y):

∂g

∂x
(5π/4,−π/4) = cos(π) = −1,

∂g

∂y
(5π/4,−π/4) = cos(π) = −1.

Now we have everything we need to write down the linearization of the original system about
the steady state (5π/4,−π/4):

dx

dt
= (x− 5π/4) + (−1)(y + π/4),

dy

dt
= (−1)(x− 5π/4) + (−1)(y + π/4).

To clean this up a bit, we can shift the axes so that the steady state is at the origin (of a new
set of axes) by using the substitutions u = x− 5π/4 and v = y + π/4. The resulting system is

du

dt
= u+ (−1)v,

dv

dt
= (−1)u+ (−1)v.

Stability can be checked by evaluating α = a+ d and β = ad− bc where a = 1, b = −1, c = −1
and d = −1. These give α = 0 and β = −2. Thus, the associated mass-spring-like equation is
u′′ − 2u = 0. The solution to this equation is u(t) = A exp(−

√
2t) + B exp(

√
2t) so there are

1



many initial conditions for which the solution grows exponentially and a few (carefully chosen)
solutions for which u(t) approaches zero (i.e. those for which B = 0). This kind of steady state is
unstable and is called a saddle. Assuming that the approximate system has solutions that are like
the solutions to the original nonlinear system near the steady state (5π/4,−π/4), we can conclude
that this steady state has a similar structure (i.e. it’s a saddle).
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