Linearizing about a steady state - an example

Consider the system
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d—gz = sin(z + y).

This system has steady states when x —y = 7/2 + nx for any integer value of n and x4y = mmn for
any integer value of m. Because of periodicity, all steady states will look like one of the four steady
state associated with n = 0,1 and m = 0, 1. To demonstrate how to linearize about a steady state,
I’ll consider the case for n = 1,m = 1. For these values, there is a steady at the intersection of the
lines x —y = 37/2 and x + y = 7, that is, at = 57/4, y = —7n/4. To determine the stability of
this steady state, we must linearize cos(z — y) and sin(x 4 y) about the point (57/4, —m/4). Let’s
give the functions names for notational convenience; f(x,y) = cos(z — y), g(x,y) = sin(x + y).
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Because (57 /4, —m/4) is a steady state, f(57/4, —m/4) = 0. Next, recall that 9 f/Jz is the derivative
of f with respect to x while holding y constant. So 0f/0z = —sin(z —y). And Jf /0y = sin(x —y).
Next, we evaluate these at the point (57/4, —7/4):
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%(57#4, —m/4) = —sin(37/2) =1,

0
—f(57r/4, —7/4) =sin(37/2) = —1.
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Similarly, we need to calculate the partial derivatives of g(x,y); dg/0x = cos(x + y), Og/0y =
cos(z + y):
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(5w /4, —m/4) = cos(m) = —1, a—y(Bﬂ/él, —m/4) = cos(m) = —1.

Now we have everything we need to write down the linearization of the original system about
the steady state (57 /4, —mw/4):

‘C%” — (2 — 57/4) + (=1)(y + 7/4),
% = (=1)(z —57/4) + (—1)(y + 7/4).

To clean this up a bit, we can shift the axes so that the steady state is at the origin (of a new
set of axes) by using the substitutions v = z — 57 /4 and v = y + w/4. The resulting system is
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il + (=1)v,
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i (—Du+ (—1)v.

Stability can be checked by evaluating a = a + d and § = ad — bc where a =1,b = —1,¢ = —1
and d = —1. These give & = 0 and § = —2. Thus, the associated mass-spring-like equation is
u” —2u = 0. The solution to this equation is u(t) = Aexp(—v/2t) + Bexp(y/2t) so there are



many initial conditions for which the solution grows exponentially and a few (carefully chosen)
solutions for which w(t) approaches zero (i.e. those for which B = 0). This kind of steady state is
unstable and is called a saddle. Assuming that the approximate system has solutions that are like
the solutions to the original nonlinear system near the steady state (57 /4, —m/4), we can conclude
that this steady state has a similar structure (i.e. it’s a saddle).



