Linearizing about a steady state - an example

Consider the system

$$
\begin{aligned}
& \frac{d x}{d t}=\cos (x-y) \\
& \frac{d y}{d t}=\sin (x+y)
\end{aligned}
$$

This system has steady states when $x-y=\pi / 2+n \pi$ for any integer value of n and $x+y=m \pi$ for any integer value of m. Because of periodicity, all steady states will look like one of the four steady state associated with $n=0,1$ and $m=0,1$. To demonstrate how to linearize about a steady state, I'll consider the case for $n=1, m=1$. For these values, there is a steady at the intersection of the lines $x-y=3 \pi / 2$ and $x+y=\pi$, that is, at $x=5 \pi / 4, y=-\pi / 4$. To determine the stability of this steady state, we must linearize $\cos (x-y)$ and $\sin (x+y)$ about the point $(5 \pi / 4,-\pi / 4)$. Let's give the functions names for notational convenience; $f(x, y)=\cos (x-y), g(x, y)=\sin (x+y)$.

$$
f(x, y) \approx f(5 \pi / 4,-\pi / 4)+\frac{\partial f}{\partial x}(5 \pi / 4,-\pi / 4)(x-5 \pi / 4)+\frac{\partial f}{\partial y}(5 \pi / 4,-\pi / 4)(y+\pi / 4) .
$$

Because $(5 \pi / 4,-\pi / 4)$ is a steady state, $f(5 \pi / 4,-\pi / 4)=0$. Next, recall that $\partial f / \partial x$ is the derivative of f with respect to x while holding y constant. So $\partial f / \partial x=-\sin (x-y)$. And $\partial f / \partial y=\sin (x-y)$. Next, we evaluate these at the point $(5 \pi / 4,-\pi / 4)$:

$$
\frac{\partial f}{\partial x}(5 \pi / 4,-\pi / 4)=-\sin (3 \pi / 2)=1, \quad \frac{\partial f}{\partial y}(5 \pi / 4,-\pi / 4)=\sin (3 \pi / 2)=-1
$$

Similarly, we need to calculate the partial derivatives of $g(x, y) ; \partial g / \partial x=\cos (x+y), \partial g / \partial y=$ $\cos (x+y)$:

$$
\frac{\partial g}{\partial x}(5 \pi / 4,-\pi / 4)=\cos (\pi)=-1, \quad \frac{\partial g}{\partial y}(5 \pi / 4,-\pi / 4)=\cos (\pi)=-1
$$

Now we have everything we need to write down the linearization of the original system about the steady state $(5 \pi / 4,-\pi / 4)$:

$$
\begin{aligned}
& \frac{d x}{d t}=(x-5 \pi / 4)+(-1)(y+\pi / 4) \\
& \frac{d y}{d t}=(-1)(x-5 \pi / 4)+(-1)(y+\pi / 4)
\end{aligned}
$$

To clean this up a bit, we can shift the axes so that the steady state is at the origin (of a new set of axes) by using the substitutions $u=x-5 \pi / 4$ and $v=y+\pi / 4$. The resulting system is

$$
\begin{aligned}
& \frac{d u}{d t}=u+(-1) v \\
& \frac{d v}{d t}=(-1) u+(-1) v .
\end{aligned}
$$

Stability can be checked by evaluating $\alpha=a+d$ and $\beta=a d-b c$ where $a=1, b=-1, c=-1$ and $d=-1$. These give $\alpha=0$ and $\beta=-2$. Thus, the associated mass-spring-like equation is $u^{\prime \prime}-2 u=0$. The solution to this equation is $u(t)=A \exp (-\sqrt{2} t)+B \exp (\sqrt{2} t)$ so there are
many initial conditions for which the solution grows exponentially and a few (carefully chosen) solutions for which $u(t)$ approaches zero (i.e. those for which $B=0$). This kind of steady state is unstable and is called a saddle. Assuming that the approximate system has solutions that are like the solutions to the original nonlinear system near the steady state $(5 \pi / 4,-\pi / 4)$, we can conclude that this steady state has a similar structure (i.e. it's a saddle).

