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The phase plane

For systems of two equations in two unknowns, the state of the system can be represented as a
point in the phase plane. As with the phase line, the phase plane does not explicitly show the
time dependent behaviour of the system. Provided the system is autonomous (i.e. time does not
explicitly appear on the right hand side of the equations), the instructions for how the state of the
system is evolving is contained in the equations. Graphically, in the phase plane, these directions are
interpreted as horizontal and vertical components of a vector that shows the direction of “motion”.
By motion, I mean where the state of the system is going, which may or may not be physical
motion – to give this its own term, we call the movement of solutions in the phase plane “the
flow” (technically, this is not the precise definition of flow but it is close enough and often used
informally).

Let’s consider the example of the lac operon, described in class. The equations for the concen-
tration of intracellular lactose and LacY are given by:

dl

dt
= βlextLacY − γl (1)

dLacY

dt
= δ + p

l2

l20 + l2
− σLacY (2)

To draw the phase plane, we must calculate and plot the nullclines, fill in enough direction-field
arrows to see how solutions move through the phase plane, identify steady states and determine
their stability graphically (if possible) and plot a few example solution curves. See Figure 1 for an
illustration of this procedure. The following list explains each panel of the figure.

(A) The LacY nullcline has a horizontal asymptote (horizontal dashed line) at (δ +p)/σ and near
l = 0 it is shaped like the parabola (δ + p l2

l20
)/σ (i.e. it is flat at l = 0). At l = l0, the nullcline

is exactly halfway between δ/σ and (δ + p)/σ (vertical dashed line).

(B) The l nullcline is a straight line through the origin with slope γ/(βlext). For lext large (e.g.
lext1), the two nullclines cross only once (at a relatively large value of l and LacY close to
(δ + p)/σ) – off the right edge of the diagram. For intermediate values of lext (e.g. lext2),
there are three crossings. For small values of lext (e.g. lext3), these is a single crossing at low
l and low LacY concentrations.

(C) Consider the case lext = lext2. Add horizontal and vertical direction vectors (arrow heads
omitted for now) to the appropriate nullclines. Because LacY is the vertical variable, any
solution that sits directly on the the LacY nullcline at some moment in time has dLacY/dt = 0
at that moment so the vertical component of the vector at that point is zero (hence horizontal
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Figure 1: See text for explanation.

vectors on the LacY nullcline). This means that as solutions cross the LacY nullcline, they
must run horizontally. Similarly, the vectors right on the l nullcline are vertical.

(D) Filling in arrow heads on the nullclines requires looking at the equations above. Anywhere
above the LacY nullcline, LacY must be decreasing (imagine plugging in a large value of
LacY and a small value of l to the LacY equation). Similarly, below the Lac nullcline, LacY
is increasing. A similar conclusion can be drawn for above and below the l nullcline. This
same arrow-estimating approach tells us that above and left of the two nullclines, flow is down
and right and below and right of both nullclines, flow is up and left. On the diagram, there is
not enough space to include vectors between the nullclines but they can be inferred from the
vectors on the nullclines. Note that if you think of the nullclines as chopping the plane into
distinct regions, if you know the direction of flow at one point in a particular region, the flow
at all other points in the same region have horizontal and vertical components with the same
sign as the known point. Also, provided the nullclines represent zeros of multiplicity one (i.e.
the zero appeared on the right hand side of the differential equation as a factor (x−a) rather
than (x− a)2), crossing a nullcline means either the horizontal or vertical component of the
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Figure 2: See text for details.

flow changes sign. This is illustrated in (F) which is a blow-up of the shaded region shown in
(E).

(E) Choosing a set of widely spaced initial condition, we can now fill in a few solution curves in the
phase plane. We can clearly see that the upper and lower steady states are stable. This follows
from the fact that no matter what direction you go from the steady state (taking a small step),
the flow forces you back to the steady state. We can also see that the middle steady state is
unstable. Notice that by drawing many solution curves near the middle nullcline, you should
be able to find one curve on each side (one coming from above-left and one from below-right)
that actually makes it to the steady state – all others lead away.

In Figure 2, I’ve drawn three solutions in the phase plane and translated each of them into a
curve for l(t) and LacY (t) drawn as functions of time. Notice that whenever a solution curve in
the phase plane crosses a nullcline, one of the curves on the left has a maximum or minimum. If
the nullcline being crossed is the LacY nullcline, the max/min is in the LacY variable (similarly
for l nullcline crossings). This is due to the fact that upon crossing a nullcline, the solution curve
necessarily changes direction with respect to that variable.

To add: - crossing of curves in the phase plane, as functions of time.

Classification of steady states

Steady states in the phase plane come in a limited number of shapes. Except for a few degenerate
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Bistability and switches

The lac operon is known to underlie bistability in the metabolic activity of E. coli. Bistability
means that for some environmental conditions, there are two stable modes of distinct behaviour
that might be seen. For the lac operon, these correspond to using either glucose or lactose as the
primary source of energy. In the phase plane, bistability occurs when there are simultaneously (i.e.
for a single set of parameter values) two stable steady states. As illustrated in the phase plane
above, the lac operon demonstrates bistability when the concentration of extracellular lactose is
in an intermediate range (e.g. lext2). In this case, there is a third steady state (an unstable one)
sitting between the two stable ones – this is actually common for bistable systems and is a result
of topological constraints that exist on vector fields in the plane (and on a line, for that matter).

One important feature of systems that demonstrate bistability is that they can be used to
generate a switch. To make a switch from a bistable system, we need several features. First, we
give each stable state a behaviour designation; for the lac operon, these would be “glucose mode”
and “lactose mode”. Next, we need to have control of some parameter that allows us to eliminate
each of the two modes by moving the parameter across a range of values. For the lac operon, this
can be done by changing the concentration of extracellular lactose, lext. Suppose lext is at a level
for which the glucose mode exists (low or intermediate) and the cell is currently in glucose mode.
To flip the switch (i.e. change to lactose mode), we must somehow eliminate the glucose mode.
This can be accomplished by increasing lext to a high value (e.g. lext1 as shown in Figure 1B). Once
the external lactose concentration is increased, the phase plane changes in such a way that the flow
drives the cell to the (only) high steady state. The cell is now in lactose mode. However, this is
only half a switch. To have a complete switch, there must be a way of turning it back “off”. In
this case, decreasing the external lactose concentration does the trick. For lext small enough, the
upper stable steady state disappears and the flow drives the cell back to glucose mode.

One important feature of a bistable switch is that the value lext for which the switch flips on
is different from the value that switches it back off. This means that the process is not reversible
(i.e. reversing a parameter change by a small amount at any stage of the switching process does
not revert the state of the system to what it was before the original small change). This feature is
sometimes called hysteresis. To summarize the terminology, a system can be bistable for a given
set of parameter values. If, in addition, there is some way to irreversibly change the current state
of the system from one stable state to the other by changing a parameter value, the system is a one
way switch. If there is a way of changing a parameter value so that the system can be pushed from
one state to the other and back again, the system is a switch. An irreversible switch demonstrates
hysteresis.

One common feature of a switch is that as the switching parameter is changed in one direction,
one of the stable steady states approaches and collides with the unstable steady state in the middle.
This is clearly seen in the lac operon as shown in Figure 1B. Other ways of switching from one
state to another exist but are more complicated and not as common.
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