Outline

- Characteristic time.
- Solving ODEs approximately using Euler's method and a spreadsheet.
- Solving ODEs using Separation of Variables.

Characteristic time

Consider the ODE

$$
\frac{d x}{d t}=-\alpha x
$$

- A solution is $x(t)=e^{-\alpha t}$.
- Shifting gives a bunch more solutions

$$
y(t)=e^{-\alpha\left(t-t_{0}\right)}=A e^{-\alpha t}
$$

- What are the units on α ? \quad time $^{-1}$.
- What is $1 / \alpha$? $\quad y(1 / \alpha)=A e^{-\alpha / \alpha}=A / e$.
- So $1 / \alpha$ is like half-life but is " $1 / \mathrm{e}$ "-life instead. Called mean life or characteristic time.

Characteristic time

Compare this to half-life:

$$
\begin{gathered}
y\left(t_{1 / 2}\right)=A e^{-\alpha t_{1 / 2}}=\frac{A}{2} . \\
e^{-\alpha t_{1 / 2}}=\frac{1}{2} . \\
-\alpha t_{1 / 2}=\log \frac{1}{2}=-\log 2 . \\
t_{1 / 2}=\frac{1}{\alpha} \log 2 .
\end{gathered}
$$

So characteristic time is only a factor of $\log 2$ different from half-life.

Characteristic time

What if your equation is not linear? Say $\frac{d x}{d t}=f(x)$ with a steady state at $x_{s s}$. How "long" does it take to get to the steady state? Linearize the equation near the steady state:

$$
\frac{d x}{d t}=f(x) \approx f\left(x_{s s}\right)+f^{\prime}\left(x_{s s}\right)\left(x-x_{s s}\right)=f^{\prime}\left(x_{s s}\right)\left(x-x_{s s}\right)
$$

Cleaner approximate equation:

$$
\frac{d x}{d t}=a(x-b)
$$

Solution: $x(t)=A e^{a t}+b$.
Steady state: $x_{s s}=b$.
Stability: stable if $a<0$.
Characteristic time: $\tau=-\frac{1}{a}=-\frac{1}{f^{\prime}\left(x_{s s}\right)}$.

Solving an ODE approximately - Euler's method

Consider the ODE

$$
\frac{d x}{d t}=f(x, t)
$$

- To solve an ODE exactly, follow a slope field continuously.
- To solve an ODE "numerically", follow a slope field discretely.

Solving an ODE approximately - Euler's method

- Starting at $\left(t_{0}, x_{0}\right)$, use the slope field at that point to linearly approximate the solution so that

$$
\begin{aligned}
& x_{1}=x_{0}+f\left(x_{0}, t_{0}\right)\left(t_{1}-t_{0}\right) . \\
& x_{2}=x_{1}+f\left(x_{1}, t_{1}\right)\left(t_{2}-t_{1}\right) .
\end{aligned}
$$

Now, to the spreadsheet...

How not to solve a differential equation

- $\frac{d f}{d x}$ is NOT A FRACTION (even in Physics class).
- What is Jess really doing when he changes this:

$$
\frac{d x}{d t}=-k x
$$

into this:

$$
\int \frac{1}{x} d x=-\int k d t ?
$$

Derivatives of inverse functions

- Example: $g(x)=\log x$ is the inverse function of $f(x)=e^{x}$.
- This means $f(g(x))=? ? x$.
- Suppose we know the derivative of $f(x)$.

$$
\frac{d}{d x} f(x)=e^{x}
$$

- What is the derivative of $h(x)=f(g(x))=e^{g(x)}$?

$$
\frac{d}{d x} h(x)=\frac{d}{d g} f(g(x)) \frac{d}{d x} g(x)=e^{g(x)} g^{\prime}(x)
$$

- But $h(x)=x$ so $\frac{d}{d x} h(x)=1$.
- So $g^{\prime}(x)=1 /\left(\frac{d}{d g} f(g(x))\right)=1 / e^{g(x)}=1 / x$.

Derivatives of inverse functions

- In general, if $f(g(x))=x$ then $g^{\prime}(x)=\frac{1}{\frac{d}{d g} f(g(x))}$.
- Try using this to find the derivative of $\arcsin x$.

Solving differential equations

- Want to solve $\frac{d}{d t} x(t)=f(x(t))$.
- Equivalent to $\frac{1}{f(x(t))} \cdot \frac{d}{d t} x(t)=1$ provided ?? $f(x(t)) \neq 0$.
- Suppose we can find a function F such that $\frac{d}{d x} F(x)=\frac{1}{f(x)}$.
- Then $\frac{d}{d t} F(x(t))=\frac{d}{d x} F(x(t)) \cdot \frac{d}{d t} x(t)=1$.
- That means $F(x(t))=t+C$ and we have only to solve this for $x(t)$.

Solving differential equations

Example: $\frac{d}{d t} x(t)=-k x(t)$

$$
\begin{gathered}
\Rightarrow \frac{1}{x(t)} \frac{d}{d t} x(t)=-k \\
\Rightarrow \frac{d}{d t} \ln |x(t)|=-k \\
\Rightarrow \ln |x(t)|=-k t+C \\
\Rightarrow|x(t)|=e^{-k t+C}=e^{C} e^{-k t} \\
\Rightarrow x(t)= \pm e^{C} e^{-k t}=D e^{-k t} .
\end{gathered}
$$

$\operatorname{Try} \frac{d}{d t} x(t)=-k x(t)^{2}$.

