Outline

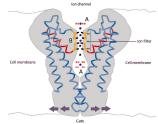
- Modeling intro
- First order chemical kinetics.
- Second order chemical kinetics.

Modeling

A model is an abstract representation of an object, system, or process, usually idealizing some features and neglecting others.

For a population with heritable variation in some characteristic that inuences an individual's capacity to reproduce or success in reproduction, the frequency of those phenoptypes that reproduce most successfully will increase.

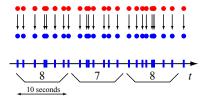
$$\frac{\partial u}{\partial t} = D\nabla^2 u$$



Modeling and theories

- Mathematical models are one category of *theory*, consisting of a set of assumptions (axioms), an agreed upon language (mathematics), and a framework of acceptable means of drawing conclusions from the axioms (logic).
- Mathematical models are formulated through translating real phenomena into parameters, variables and their interrelations which often come in the form of differential equations.
- Example: Assume that the size of a population of bacteria grows at a rate proportional to its current size (our assumption). Translating into an equation, we get dp/dt = rp (the assumption restated in our mathematical language). Solving this equation (an acceptable means of drawing conclusions), we find that the population grows exponentially. To determine if we've got a good theory, we must look at data.

First order kinetics


- A reaction whose rate depends on the concentration of only one reactant.
- Example: an ion channel undergoing a conformation change (closed to open).

(From http://www.bio.miami.edu/~cmallery/150/memb/ion_channels.htm)

First order kinetics

When is it reasonable to claim that for a collection of 100 molecules, we can determine the average rate of the reaction?

Estimate of reaction rate: $\lambda = 7.7$ reactions per 10 seconds per 100 molecules = 0.077 s⁻¹ molecule⁻¹

First order kinetics

> N(t) unreacted molecules at time t. Change in N(t):

$$N(t + \Delta t) = N(t) - \lambda \Delta t N(t)$$

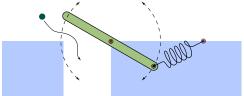
$$N(t + \Delta t) - N(t) = -\lambda \Delta t N(t).$$

$$rac{N(t+\Delta t)-N(t)}{\Delta t}=-\lambda N(t).$$

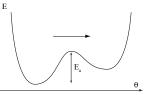
First order kinetics

$$rac{N(t+\Delta t)-N(t)}{\Delta t}=-\lambda N(t).$$

▶ In the limit $\Delta t \rightarrow 0$,

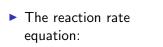

$$\frac{dN}{dt} = -\lambda N.$$

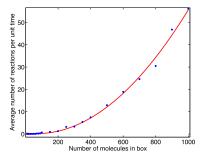
Valid only for periods of time long enough for the average rate to give a good approximation of the number of reactions. More molecules \Rightarrow short time intervals are ok.


What determines λ, the average rate?

First order kinetics

 Full protein structure too hard to analyze; build a simpler model...


Energy as a function of gate angle:


• Average rate $\propto e^{-E_a/kT}$. Matlab movies...

Second order kinetics

- Reaction of two molecules, possibly of the same type, requiring a collision.
- ► Harder to describe because of space, diffusion and collision.
- ► Take *N* molecules, place in box, let them diffuse. If two collide, give them a prob *p* of reacting. How does the rate scale with *N*? More movies...

$$\frac{dN}{dt} = -kN^2.$$

