Guide to Integration

Mathematics 101

Mark MacLean and Andrew Rechnitzer

February 16, 2007
(1) Elementary Integrals
(2) Substitution
(3) Trigonometric integrals
(4) Integration by parts
(5) Trigonometric substitutions
(6) Partial Fractions
(7) 100 Integrals to do

Table of integrals

Recognise these from a table of derivatives.

The very basics

(1) $\int 1 \mathrm{~d} x=x+c$
(2) $\int \frac{1}{x} \mathrm{~d} x=\log |x|+c$
(3) $\int x^{n} \mathrm{~d} x=\frac{1}{n+1} x^{n+1}+c$
(-) $\int e^{a x} \mathrm{~d} x=\frac{1}{a} e^{a x}+c$

Table of integrals

Recognise these from a table of derivatives.

The very basics

(1) $\int 1 \mathrm{~d} x=x+c$
(2) $\int \frac{1}{x} \mathrm{~d} x=\log |x|+c$ - don't forget the $|$.$| .$
($\int x^{n} \mathrm{~d} x=\frac{1}{n+1} x^{n+1}+c$ - if $n \neq-1$.
($) \int e^{a x} \mathrm{~d} x=\frac{1}{a} e^{a x}+c$

Table of integrals

Recognise these from a table of derivatives.

Trigonometry

(1) $\int \sin (a x) \mathrm{d} x=\frac{-1}{a} \cos (a x)+c$
(2) $\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$

- $\int \sec ^{2}(a x) \mathrm{d} x=\frac{1}{a} \tan (a x)+c$
(- $\int \sec (a x) \tan (a x) d x=\frac{1}{a} \sec (a x)+c$

Table of integrals

Recognise these from a table of derivatives.

Trigonometry

(1) $\int \sin (a x) d x=\frac{-1}{a} \cos (a x)+c$
(2) $\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
(3) $\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
(4) $\int \sec (a x) \tan (a x) \mathrm{d} x=\frac{1}{a} \sec (a x)+c$

Inverse trig

(1) $\int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x=\sin ^{-1}(x / a)+c$
(2) $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}(x / a)+c$.

Table of integrals

Recognise these from a table of derivatives.

Trigonometry

(1) $\int \sin (a x) d x=\frac{-1}{a} \cos (a x)+c$
(2) $\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
(3) $\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
(4) $\int \sec (a x) \tan (a x) \mathrm{d} x=\frac{1}{a} \sec (a x)+c$

Inverse trig

(1) $\int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x=\sin ^{-1}(x / a)+c$ - need $a>0$.
(2) $\int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x=\frac{1}{a} \tan ^{-1}(x / a)+c$.

Substitution rule

From the chain rule we get

$$
\int f^{\prime}(g(x)) g^{\prime}(x) \mathrm{d} x=\int f^{\prime}(u) \mathrm{d} u \quad u=g(x)
$$

Substitution rule

From the chain rule we get

$$
\begin{array}{rlrl}
\int f^{\prime}(g(x)) g^{\prime}(x) \mathrm{d} x & =\int f^{\prime}(u) \mathrm{d} u & u=g(x) \\
& =f(u)+c=f(g(x))+c
\end{array}
$$

Look for a function and its derivative in the integrand.

Substitution example

Example $\int \frac{\sin (3 \log x)}{x} d x$

Substitution example

Example $\int \frac{\sin (3 \log x)}{x} d x$

- Let $u=\log x$ so $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$.
- We then completely transform all x 's into u 's.

Substitution example

Example $\int \frac{\sin (3 \log x)}{x} d x$

- Let $u=\log x$ so $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$.
- We then completely transform all x 's into u 's.

$$
\begin{aligned}
\int \frac{\sin (3 \log x)}{x} \mathrm{~d} x & =\int \sin 3 u \mathrm{~d} u \\
& =\frac{-1}{3} \cos (3 u)+c
\end{aligned}
$$

Substitution example

Example $\int \frac{\sin (3 \log x)}{x} d x$

- Let $u=\log x$ so $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$.
- We then completely transform all x 's into u 's.

$$
\begin{aligned}
\int \frac{\sin (3 \log x)}{x} \mathrm{~d} x & =\int \sin 3 u \mathrm{~d} u \\
& =\frac{-1}{3} \cos (3 u)+c
\end{aligned}
$$

We have to turn all the u 's back into x 's

Substitution example

Example $\int \frac{\sin (3 \log x)}{x} d x$

- Let $u=\log x$ so $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$.
- We then completely transform all x 's into u 's.

$$
\begin{aligned}
\int \frac{\sin (3 \log x)}{x} \mathrm{~d} x & =\int \sin 3 u \mathrm{~d} u \\
& =\frac{-1}{3} \cos (3 u)+c
\end{aligned}
$$

We have to turn all the u 's back into x 's

$$
=\frac{-1}{3} \cos (3 \log x)+c
$$

Substitution example

Example $\int \frac{\sin (3 \log x)}{x} d x$

- Let $u=\log x$ so $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$.
- We then completely transform all x 's into u 's.

$$
\begin{aligned}
\int \frac{\sin (3 \log x)}{x} \mathrm{~d} x & =\int \sin 3 u \mathrm{~d} u \\
& =\frac{-1}{3} \cos (3 u)+c
\end{aligned}
$$

We have to turn all the u 's back into x 's

$$
=\frac{-1}{3} \cos (3 \log x)+c
$$

WARNING - you must turn all the x 's into the new variable.

Substitution with definite integrals

You have 2 choices of what to do with the integration terminals.

Transform terminals

We make $u=\log x$ - so change the terminals too.

Substitution with definite integrals

You have 2 choices of what to do with the integration terminals.

Transform terminals

We make $u=\log x$ - so change the terminals too.

$$
\int_{1}^{2} \frac{\sin (3 \log x)}{x} \mathrm{~d} x=\int_{\log 1}^{\log 2} \sin 3 u \mathrm{~d} u
$$

Substitution with definite integrals

You have 2 choices of what to do with the integration terminals.

Transform terminals

We make $u=\log x$ - so change the terminals too.

$$
\begin{aligned}
\int_{1}^{2} \frac{\sin (3 \log x)}{x} d x & =\int_{\log 1}^{\log 2} \sin 3 u d u \\
& =\left[\frac{-1}{3} \cos (3 u)\right]_{\log 1=0}^{\log 2}
\end{aligned}
$$

Substitution with definite integrals

You have 2 choices of what to do with the integration terminals.

Transform terminals

We make $u=\log x$ - so change the terminals too.

$$
\begin{aligned}
\int_{1}^{2} \frac{\sin (3 \log x)}{x} \mathrm{~d} x & =\int_{\log 1}^{\log 2} \sin 3 u \mathrm{~d} u \\
& =\left[\frac{-1}{3} \cos (3 u)\right]_{\log 1=0}^{\log 2} \\
& =\frac{-1}{3} \cos (3 \log 2)+\frac{1}{3} \cos (0) \\
& =\frac{-1}{3} \cos (3 \log 2)+\frac{1}{3}
\end{aligned}
$$

Substitution with definite integrals

You have 2 choices of what to do with the integration terminals.
Keep terminals, remember to change everything back to x

$$
\int_{1}^{2} \frac{\sin (3 \log x)}{x} d x=\int_{x=1}^{x=2} \sin 3 u d u
$$

Substitution with definite integrals

You have 2 choices of what to do with the integration terminals.
Keep terminals, remember to change everything back to x

$$
\begin{aligned}
\int_{1}^{2} \frac{\sin (3 \log x)}{x} \mathrm{~d} x & =\int_{x=1}^{x=2} \sin 3 u \mathrm{~d} u \\
& =\left[\frac{-1}{3} \cos (3 u)\right]_{x=1}^{x=2}
\end{aligned}
$$

Substitution with definite integrals

You have 2 choices of what to do with the integration terminals.
Keep terminals, remember to change everything back to x

$$
\begin{aligned}
\int_{1}^{2} \frac{\sin (3 \log x)}{x} \mathrm{~d} x & =\int_{x=1}^{x=2} \sin 3 u \mathrm{~d} u \\
& =\left[\frac{-1}{3} \cos (3 u)\right]_{x=1}^{x=2} \\
& =\left[\frac{-1}{3} \cos (3 \log x)\right]_{1}^{2}
\end{aligned}
$$

Substitution with definite integrals

You have 2 choices of what to do with the integration terminals.
Keep terminals, remember to change everything back to x

$$
\begin{aligned}
\int_{1}^{2} \frac{\sin (3 \log x)}{x} \mathrm{~d} x & =\int_{x=1}^{x=2} \sin 3 u \mathrm{~d} u \\
& =\left[\frac{-1}{3} \cos (3 u)\right]_{x=1}^{x=2} \\
& =\left[\frac{-1}{3} \cos (3 \log x)\right]_{1}^{2} \\
& =\frac{-1}{3} \cos (3 \log 2)+\frac{1}{3}
\end{aligned}
$$

Substitution with definite integrals

You have 2 choices of what to do with the integration terminals.
Keep terminals, remember to change everything back to x

$$
\begin{aligned}
\int_{1}^{2} \frac{\sin (3 \log x)}{x} \mathrm{~d} x & =\int_{x=1}^{x=2} \sin 3 u \mathrm{~d} u \\
& =\left[\frac{-1}{3} \cos (3 u)\right]_{x=1}^{x=2} \\
& =\left[\frac{-1}{3} \cos (3 \log x)\right]_{1}^{2} \\
& =\frac{-1}{3} \cos (3 \log 2)+\frac{1}{3}
\end{aligned}
$$

Of course the answers are the same.

Trigonometric integrals

- Trig integrals are really just special cases of substitution.

Trigonometric integrals

- Trig integrals are really just special cases of substitution.
- Usually we need trig identities like

Trigonometric integrals

- Trig integrals are really just special cases of substitution.
- Usually we need trig identities like

Useful trig identities

$$
\begin{aligned}
\cos ^{2} x+\sin ^{2} x & =1 \\
1+\tan ^{2} x & =\sec ^{2} x \\
\cos ^{2} x & =\frac{1}{2}(1+\cos 2 x) \\
\sin ^{2} x & =\frac{1}{2}(1-\cos 2 x)
\end{aligned}
$$

Trigonometric integrals

Example $\int \sin ^{a} x \cos ^{b} x d x$

Trigonometric integrals

Example $\int \sin ^{a} x \cos ^{b} x d x$

- If a and b are both even then use

$$
\begin{aligned}
\cos ^{2} x & =\frac{1}{2}(1+\cos 2 x) \\
\sin ^{2} x & =\frac{1}{2}(1-\cos 2 x)
\end{aligned}
$$

Trigonometric integrals

Example $\int \sin ^{a} x \cos ^{b} x d x$

- If a and b are both even then use

$$
\begin{aligned}
\cos ^{2} x & =\frac{1}{2}(1+\cos 2 x) \\
\sin ^{2} x & =\frac{1}{2}(1-\cos 2 x)
\end{aligned}
$$

- If a or b is odd then use

$$
\begin{aligned}
\cos ^{2} x & =1-\sin ^{2} x \\
\sin ^{2} x & =1-\cos ^{2} x
\end{aligned}
$$

Trigonometric integrals

Example $\int \sec x d x$

Trigonometric integrals

Example $\int \sec x \mathrm{~d} x$
Now this is not at all obvious, but you should see it. . .

Trigonometric integrals

Example $\int \sec x d x$

Now this is not at all obvious, but you should see it. . .

$$
\int \sec x \mathrm{~d} x=\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) \mathrm{d} x
$$

Trigonometric integrals

Example $\int \sec x d x$

Now this is not at all obvious, but you should see it. . .

$$
\int \sec x \mathrm{~d} x=\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) \mathrm{d} x
$$

Now set $u=\sec x+\tan x$:

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=\sec x \tan x+\sec ^{2} x=\sec x(\tan x+\sec x)
$$

Trigonometric integrals

Example $\int \sec x d x$

Now this is not at all obvious, but you should see it. . .

$$
\int \sec x \mathrm{~d} x=\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) \mathrm{d} x
$$

Now set $u=\sec x+\tan x$:

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=\sec x \tan x+\sec ^{2} x=\sec x(\tan x+\sec x)
$$

Hence we have

$$
\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) \mathrm{d} x=\int \frac{1}{u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x
$$

Trigonometric integrals

Example $\int \sec x d x$

Now this is not at all obvious, but you should see it. . .

$$
\int \sec x \mathrm{~d} x=\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) \mathrm{d} x
$$

Now set $u=\sec x+\tan x$:

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=\sec x \tan x+\sec ^{2} x=\sec x(\tan x+\sec x)
$$

Hence we have

$$
\begin{aligned}
\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) \mathrm{d} x & =\int \frac{1}{u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \\
& =\int \frac{1}{u} \mathrm{~d} u=\log |u|+c
\end{aligned}
$$

Trigonometric integrals

Example $\int \sec x d x$

Now this is not at all obvious, but you should see it. . .

$$
\int \sec x \mathrm{~d} x=\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) \mathrm{d} x
$$

Now set $u=\sec x+\tan x$:

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=\sec x \tan x+\sec ^{2} x=\sec x(\tan x+\sec x)
$$

Hence we have

$$
\begin{aligned}
\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) \mathrm{d} x & =\int \frac{1}{u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \\
& =\int \frac{1}{u} \mathrm{~d} u=\log |u|+c \\
& =\log |\sec x+\tan x|+c
\end{aligned}
$$

Integration by parts

From the product rule we get

$$
\int f(x) g^{\prime}(x) \mathrm{d} x=f(x) g(x)-\int g(x) f^{\prime}(x) \mathrm{d} x
$$

- Frequently used when you have the product of 2 different types of functions.

Integration by parts

From the product rule we get

$$
\int f(x) g^{\prime}(x) \mathrm{d} x=f(x) g(x)-\int g(x) f^{\prime}(x) \mathrm{d} x
$$

- Frequently used when you have the product of 2 different types of functions.
- You have to choose $f(x)$ and $g^{\prime}(x)$ - there are 2 options.
- Usually one will work and the other will not.

Integration by parts

Example $\int x e^{x} d x$

Integration by parts

Example $\int x e^{x} d x$

- Choose $f=x$ and $g^{\prime}=e^{x}$

Integration by parts

Example $\int x e^{x} d x$

- Choose $f=x$ and $g^{\prime}=e^{x}-$ so $f^{\prime}=1$ and $g=e^{x}$:

Integration by parts

Example $\int x e^{x} d x$

- Choose $f=x$ and $g^{\prime}=e^{x}$ - so $f^{\prime}=1$ and $g=e^{x}$:

$$
\int f(x) g^{\prime}(x) \mathrm{d} x=f(x) g(x)-\int g(x) f^{\prime}(x) \mathrm{d} x
$$

Integration by parts

Example $\int x e^{x} d x$

- Choose $f=x$ and $g^{\prime}=e^{x}$ - so $f^{\prime}=1$ and $g=e^{x}$:

$$
\begin{aligned}
\int f(x) g^{\prime}(x) \mathrm{d} x & =f(x) g(x)-\int g(x) f^{\prime}(x) \mathrm{d} x \\
\int x e^{x} \mathrm{~d} x & =x e^{x}-\int e^{x} \cdot 1 \mathrm{~d} x \\
& =x e^{x}-e^{x}+c
\end{aligned}
$$

Integration by parts

Example $\int x e^{x} d x$

- What if we choose f and g^{\prime} the other way around?

Integration by parts

Example $\int x e^{x} d x$

- What if we choose f and g^{\prime} the other way around?

$$
f=e^{x} \text { and } g^{\prime}=x \text { - so } f^{\prime}=e^{x} \text { and } g=x^{2} / 2
$$

Integration by parts

Example $\int x e^{x} d x$

- What if we choose f and g^{\prime} the other way around?

$$
f=e^{x} \text { and } g^{\prime}=x \text { - so } f^{\prime}=e^{x} \text { and } g=x^{2} / 2
$$

$$
\int x e^{x} d x=\frac{x^{2}}{2} e^{x}-\int \frac{x^{2}}{2} e^{x} d x
$$

Integration by parts

Example $\int x e^{x} d x$

- What if we choose f and g^{\prime} the other way around?

$$
f=e^{x} \text { and } g^{\prime}=x \text { - so } f^{\prime}=e^{x} \text { and } g=x^{2} / 2
$$

$$
\int x e^{x} d x=\frac{x^{2}}{2} e^{x}-\int \frac{x^{2}}{2} e^{x} d x
$$

- This is not getting easier, so stop!

Integration by parts

Sometimes one of the parts is " 1 ".
Example $\int \log x d x$

Integration by parts

Sometimes one of the parts is " 1 ".
Example $\int \log x d x$

- Choose $f=\log x$ and $g^{\prime}=1$

Integration by parts

Sometimes one of the parts is " 1 ".
Example $\int \log x d x$

- Choose $f=\log x$ and $g^{\prime}=1$ - so $f^{\prime}=1 / x$ and $g=x$:

Integration by parts

Sometimes one of the parts is " 1 ".
Example $\int \log x d x$

- Choose $f=\log x$ and $g^{\prime}=1$ - so $f^{\prime}=1 / x$ and $g=x$:

$$
\int f(x) g^{\prime}(x) \mathrm{d} x=f(x) g(x)-\int g(x) f^{\prime}(x) \mathrm{d} x
$$

Integration by parts

Sometimes one of the parts is " 1 ".
Example $\int \log x d x$

- Choose $f=\log x$ and $g^{\prime}=1$ - so $f^{\prime}=1 / x$ and $g=x$:

$$
\begin{aligned}
\int f(x) g^{\prime}(x) \mathrm{d} x & =f(x) g(x)-\int g(x) f^{\prime}(x) \mathrm{d} x \\
\int \log x \mathrm{~d} x & =x \log x-\int x / x \mathrm{~d} x \\
& =x \log x-x+c
\end{aligned}
$$

Trigonometric substitutions

Based on

$$
\begin{aligned}
& \sin ^{2} \theta=1-\cos ^{2} \theta \\
& \tan ^{2} \theta+1=\sec ^{2} \theta
\end{aligned}
$$

Trigonometric substitutions

Based on

$$
\begin{aligned}
& \sin ^{2} \theta=1-\cos ^{2} \theta \\
& \tan ^{2} \theta+1=\sec ^{2} \theta
\end{aligned}
$$

Things to associate

If the integrand contains

$$
\begin{aligned}
\sqrt{a^{2}-x^{2}} \longrightarrow & \sin ^{2} \theta=1-\cos ^{2} \theta \\
a^{2}+x^{2} \longrightarrow & 1+\tan ^{2} \theta=\sec ^{2} \theta
\end{aligned}
$$

Trigonometric substitutions

Compute $\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x$

- Contains $\sqrt{a^{2}-x^{2}}$ so put $x=\sqrt{5} \sin \theta$.

Trigonometric substitutions

Compute $\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x$

- Contains $\sqrt{a^{2}-x^{2}}$ so put $x=\sqrt{5} \sin \theta$.
- Hence $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\sqrt{5} \cos \theta$ and

$$
\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x=\int \frac{\sqrt{5} \cos \theta}{5^{3 / 2}\left(1-\sin ^{2} \theta\right)^{3 / 2}} \mathrm{~d} \theta
$$

Trigonometric substitutions

Compute $\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x$

- Contains $\sqrt{a^{2}-x^{2}}$ so put $x=\sqrt{5} \sin \theta$.
- Hence $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\sqrt{5} \cos \theta$ and

$$
\begin{aligned}
\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x & =\int \frac{\sqrt{5} \cos \theta}{5^{3 / 2}\left(1-\sin ^{2} \theta\right)^{3 / 2}} \mathrm{~d} \theta \\
& =\int \frac{\cos \theta}{5\left(\cos ^{2} \theta\right)^{3 / 2}} \mathrm{~d} \theta
\end{aligned}
$$

Trigonometric substitutions

Compute $\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x$

- Contains $\sqrt{a^{2}-x^{2}}$ so put $x=\sqrt{5} \sin \theta$.
- Hence $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\sqrt{5} \cos \theta$ and

$$
\begin{aligned}
\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x & =\int \frac{\sqrt{5} \cos \theta}{5^{3 / 2}\left(1-\sin ^{2} \theta\right)^{3 / 2}} \mathrm{~d} \theta \\
& =\int \frac{\cos \theta}{5\left(\cos ^{2} \theta\right)^{3 / 2}} \mathrm{~d} \theta \\
& =\int \frac{1}{5 \cos ^{2}} \mathrm{~d} \theta=\frac{1}{5} \int \sec ^{2} \theta \mathrm{~d} \theta
\end{aligned}
$$

Trigonometric substitutions

Compute $\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x$

- Contains $\sqrt{a^{2}-x^{2}}$ so put $x=\sqrt{5} \sin \theta$.
- Hence $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\sqrt{5} \cos \theta$ and

$$
\begin{aligned}
\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x & =\int \frac{\sqrt{5} \cos \theta}{5^{3 / 2}\left(1-\sin ^{2} \theta\right)^{3 / 2}} \mathrm{~d} \theta \\
& =\int \frac{\cos \theta}{5\left(\cos ^{2} \theta\right)^{3 / 2}} \mathrm{~d} \theta \\
& =\int \frac{1}{5 \cos ^{2}} \mathrm{~d} \theta=\frac{1}{5} \int \sec ^{2} \theta \mathrm{~d} \theta \\
& =\frac{1}{5} \tan \theta+c
\end{aligned}
$$

Trigonometric substitutions

Compute $\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x$

- Contains $\sqrt{a^{2}-x^{2}}$ so put $x=\sqrt{5} \sin \theta$.
- Hence $\frac{\mathrm{dx}}{\mathrm{d} \theta}=\sqrt{5} \cos \theta$ and

$$
\begin{aligned}
\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x & =\int \frac{\sqrt{5} \cos \theta}{5^{3 / 2}\left(1-\sin ^{2} \theta\right)^{3 / 2}} \mathrm{~d} \theta \\
& =\int \frac{\cos \theta}{5\left(\cos ^{2} \theta\right)^{3 / 2}} \mathrm{~d} \theta \\
& =\int \frac{1}{5 \cos ^{2}} \mathrm{~d} \theta=\frac{1}{5} \int \sec ^{2} \theta \mathrm{~d} \theta \\
& =\frac{1}{5} \tan \theta+c
\end{aligned}
$$

- We aren't done yet - we have to change back to the x variable.

Trigonometric substitutions

Compute $\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x$

- We substituted $x=\sqrt{5} \sin \theta$ and got $\frac{1}{5} \tan \theta+c$

Trigonometric substitutions

Compute $\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x$

- We substituted $x=\sqrt{5} \sin \theta$ and got $\frac{1}{5} \tan \theta+c$
- We can express $\tan \theta$ in terms of $\sin \theta$

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta}=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}} \\
& =\frac{x / \sqrt{5}}{\sqrt{1-x^{2} / 5}}=\frac{x}{\sqrt{5} \sqrt{1-x^{2} / 5}}=\frac{x}{\sqrt{5-x^{2}}}
\end{aligned}
$$

Trigonometric substitutions

Compute $\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x$

- We substituted $x=\sqrt{5} \sin \theta$ and got $\frac{1}{5} \tan \theta+c$
- We can express $\tan \theta$ in terms of $\sin \theta$

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta}=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}} \\
& =\frac{x / \sqrt{5}}{\sqrt{1-x^{2} / 5}}=\frac{x}{\sqrt{5} \sqrt{1-x^{2} / 5}}=\frac{x}{\sqrt{5-x^{2}}}
\end{aligned}
$$

- Hence the integral is

$$
\int\left(5-x^{2}\right)^{-3 / 2} \mathrm{~d} x=\frac{x}{5 \sqrt{5-x^{2}}}+c
$$

Trigonometric substitutions

$$
\text { Compute } \int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x
$$

Trigonometric substitutions

Compute $\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x$

- Contains $a^{2}+x^{2}$, so sub $x=2 \tan \theta$.

Trigonometric substitutions

Compute $\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x$

- Contains $a^{2}+x^{2}$, so sub $x=2 \tan \theta$.
- Hence $\frac{\mathrm{dx}}{\mathrm{d} \theta}=2 \sec ^{2} \theta$ and

$$
\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x=\int \frac{2 \sec ^{2} \theta}{\sqrt{4+4 \tan ^{2} \theta}} \mathrm{~d} \theta
$$

Trigonometric substitutions

Compute $\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x$

- Contains $a^{2}+x^{2}$, so sub $x=2 \tan \theta$.
- Hence $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \sec ^{2} \theta$ and

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x & =\int \frac{2 \sec ^{2} \theta}{\sqrt{4+4 \tan ^{2} \theta}} \mathrm{~d} \theta \\
& =\int \frac{2 \sec ^{2} \theta}{2 \sqrt{1+\tan ^{2} \theta}} \mathrm{~d} \theta=\int \frac{\sec ^{2} \theta}{\sqrt{\sec ^{2} \theta}} \mathrm{~d} \theta
\end{aligned}
$$

Trigonometric substitutions

Compute $\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x$

- Contains $a^{2}+x^{2}$, so sub $x=2 \tan \theta$.
- Hence $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \sec ^{2} \theta$ and

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x & =\int \frac{2 \sec ^{2} \theta}{\sqrt{4+4 \tan ^{2} \theta}} \mathrm{~d} \theta \\
& =\int \frac{2 \sec ^{2} \theta}{2 \sqrt{1+\tan ^{2} \theta}} \mathrm{~d} \theta=\int \frac{\sec ^{2} \theta}{\sqrt{\sec ^{2} \theta}} \mathrm{~d} \theta \\
& =\int \sec \theta \mathrm{d} \theta
\end{aligned}
$$

Trigonometric substitutions

Compute $\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x$

- Contains $a^{2}+x^{2}$, so sub $x=2 \tan \theta$.
- Hence $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \sec ^{2} \theta$ and

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x & =\int \frac{2 \sec ^{2} \theta}{\sqrt{4+4 \tan ^{2} \theta}} \mathrm{~d} \theta \\
& =\int \frac{2 \sec ^{2} \theta}{2 \sqrt{1+\tan ^{2} \theta}} \mathrm{~d} \theta=\int \frac{\sec ^{2} \theta}{\sqrt{\sec ^{2} \theta}} \mathrm{~d} \theta \\
& =\int \sec \theta \mathrm{d} \theta
\end{aligned}
$$

- We have assumed $\sec \theta>0$. We did similarly in the previous example.

Trigonometric substitutions

Compute $\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x$

- We substituted $x=2 \tan \theta$ and got

$$
\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x=\int \sec \theta \mathrm{d} \theta
$$

Trigonometric substitutions

Compute $\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x$

- We substituted $x=2 \tan \theta$ and got

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x & =\int \sec \theta \mathrm{d} \theta \\
& =\log |\sec \theta+\tan \theta|+c \quad \text { previous work }
\end{aligned}
$$

Trigonometric substitutions

$$
\text { Compute } \int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x
$$

- We substituted $x=2 \tan \theta$ and got

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x & =\int \sec \theta \mathrm{d} \theta \\
& =\log |\sec \theta+\tan \theta|+c \quad \text { previous work }
\end{aligned}
$$

- So now we need to rewrite in terms of x.

Trigonometric substitutions

Compute $\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x$

- We substituted $x=2 \tan \theta$ and got

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x & =\int \sec \theta \mathrm{d} \theta \\
& =\log |\sec \theta+\tan \theta|+c \quad \text { previous work }
\end{aligned}
$$

- So now we need to rewrite in terms of x.
- The $\tan \theta=x / 2$ is easy. But $\sec \theta$ is harder:

$$
\begin{aligned}
\sec ^{2} \theta & =1+\tan ^{2} \theta \\
\sec \theta & =\sqrt{1+\tan ^{2} \theta}=\sqrt{1+x^{2} / 4}
\end{aligned}
$$

Trigonometric substitutions

Compute $\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x$

- We substituted $x=2 \tan \theta$ and got

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x & =\int \sec \theta \mathrm{d} \theta \\
& =\log |\sec \theta+\tan \theta|+c \quad \text { previous work }
\end{aligned}
$$

- So now we need to rewrite in terms of x.
- The $\tan \theta=x / 2$ is easy. But $\sec \theta$ is harder:

$$
\begin{aligned}
\sec ^{2} \theta & =1+\tan ^{2} \theta \\
\sec \theta & =\sqrt{1+\tan ^{2} \theta}=\sqrt{1+x^{2} / 4}
\end{aligned}
$$

- Hence: $\int \frac{1}{\sqrt{4+x^{2}}} \mathrm{~d} x=\log \left|\sqrt{1+x^{2} / 4}+x / 2\right|+c$.

Trigonometric substitutions

- Sometimes you need to complete the square in order to get started.

Try $\frac{d x}{4 x^{2}+12 x+13}$

Partial fractions

Based on partial fraction decomposition of rational functions

- There are some very general rules for this technique.
- It is one of the few very formulaic techniques of integration.

Partial fractions

Based on partial fraction decomposition of rational functions

- There are some very general rules for this technique.
- It is one of the few very formulaic techniques of integration.
- Any polynomial with real coefficients can be factored into linear and quadratic factors with real coefficients

$$
\begin{aligned}
Q(x) & =k\left(x-a_{1}\right)^{m_{1}}\left(x-a_{2}\right)^{m_{2}} \cdots\left(x-a_{j}\right)^{m_{j}} \\
& \times\left(x^{2}+b_{1} x+c_{1}\right)^{n_{1}}\left(x^{2}+b_{2} x+c_{2}\right)^{n_{2}} \cdots\left(x^{2}+b_{1} x+c_{l}\right)^{n_{l}}
\end{aligned}
$$

Partial fractions

- Suppose $f(x)=P(x) / Q(x)$ with $\operatorname{deg}(P)<\operatorname{deg}(Q)$. You might have to do division to arrive at this.

Partial fractions

- Suppose $f(x)=P(x) / Q(x)$ with $\operatorname{deg}(P)<\operatorname{deg}(Q)$. You might have to do division to arrive at this.
- Factorise $Q(x)$ as on the previous slide.

Partial fractions

- Suppose $f(x)=P(x) / Q(x)$ with $\operatorname{deg}(P)<\operatorname{deg}(Q)$. You might have to do division to arrive at this.
- Factorise $Q(x)$ as on the previous slide.
- Rewrite $f(x)$ as

$$
f(x)=\frac{A_{11}}{\left(x-a_{1}\right)^{1}}+\frac{A_{12}}{\left(x-a_{1}\right)^{2}}+\cdots+\frac{A_{1 m_{1}}}{\left(x-a_{1}\right)^{m_{1}}}
$$

+ similar terms for each linear factor
$+\frac{B_{11} x+C_{11}}{\left(x^{2}+b_{1} x+c_{1}\right)^{1}}+\frac{B_{12} x+C_{12}}{\left(x^{2}+b_{1} x+c_{1}\right)^{2}}+\cdots \frac{B_{1 n_{1}} x+C_{1 n_{1}}}{\left(x^{2}+b_{1} x+c_{1}\right)^{n_{1}}}$
+ similar terms for each quadratic factor

Partial fractions

- Suppose $f(x)=P(x) / Q(x)$ with $\operatorname{deg}(P)<\operatorname{deg}(Q)$. You might have to do division to arrive at this.
- Factorise $Q(x)$ as on the previous slide.
- Rewrite $f(x)$ as

$$
f(x)=\frac{A_{11}}{\left(x-a_{1}\right)^{1}}+\frac{A_{12}}{\left(x-a_{1}\right)^{2}}+\cdots+\frac{A_{1 m_{1}}}{\left(x-a_{1}\right)^{m_{1}}}
$$

+ similar terms for each linear factor
$+\frac{B_{11} x+C_{11}}{\left(x^{2}+b_{1} x+c_{1}\right)^{1}}+\frac{B_{12} x+C_{12}}{\left(x^{2}+b_{1} x+c_{1}\right)^{2}}+\cdots \frac{B_{1 n_{1}} x+C_{1 n_{1}}}{\left(x^{2}+b_{1} x+c_{1}\right)^{n_{1}}}$
+ similar terms for each quadratic factor
- Once in this form, we can integrate term-by-term.

Partial fractions

$$
\int \frac{\mathrm{d} x}{x(x-1)}
$$

- Write in partial fraction form

$$
\begin{aligned}
\frac{1}{x(x-1)} & =\frac{A}{x}+\frac{B}{x-1} & & \text { Now find } A \text { and } B \\
& =\frac{A(x-1)+B x}{x(x-1)} & & \text { Compare numerators }
\end{aligned}
$$

Partial fractions

$\int \frac{d x}{x(x-1)}$

- Write in partial fraction form

$$
\begin{aligned}
\frac{1}{x(x-1)} & =\frac{A}{x}+\frac{B}{x-1} & & \text { Now find } A \text { and } B . \\
& =\frac{A(x-1)+B x}{x(x-1)} & & \text { Compare numerators }
\end{aligned}
$$

- Compare coefficients of x in the numerators to get equations for A and B.

$$
x(A+B)+(-A)=0 x+1
$$

Partial fractions

$\int \frac{\mathrm{d} x}{x(x-1)}$

- Write in partial fraction form

$$
\begin{aligned}
\frac{1}{x(x-1)} & =\frac{A}{x}+\frac{B}{x-1} & & \text { Now find } A \text { and } B . \\
& =\frac{A(x-1)+B x}{x(x-1)} & & \text { Compare numerators }
\end{aligned}
$$

- Compare coefficients of x in the numerators to get equations for A and B.

$$
x(A+B)+(-A)=0 x+1
$$

- Hence we have 2 equations

$$
\left.\begin{array}{cc}
A+B & =0 \\
-A & =1
\end{array}\right\} \Rightarrow A=-1, B=1
$$

Partial fractions

$\int \frac{\mathrm{d} x}{x(x-1)}$

- Hence in partial fraction form we have

$$
\frac{1}{x(x-1)}=\frac{-1}{x}+\frac{1}{x-1}
$$

always check this!

Partial fractions

$\int \frac{\mathrm{d} x}{x(x-1)}$

- Hence in partial fraction form we have

$$
\frac{1}{x(x-1)}=\frac{-1}{x}+\frac{1}{x-1}
$$

always check this!

- Now integrate term-by-term

$$
\begin{aligned}
\int \frac{1}{x(x-1)} \mathrm{d} x & =-\int \frac{1}{x} \mathrm{~d} x+\int \frac{1}{x-1} \mathrm{~d} x \\
& =-\log |x|+\log |x-1|+c \\
& =\log \left|\frac{x-1}{x}\right|+c
\end{aligned}
$$

Partial fractions

$\int \frac{\mathrm{d} x}{x(x-1)}$

- Hence in partial fraction form we have

$$
\frac{1}{x(x-1)}=\frac{-1}{x}+\frac{1}{x-1}
$$

always check this!

- Now integrate term-by-term

$$
\begin{aligned}
\int \frac{1}{x(x-1)} \mathrm{d} x & =-\int \frac{1}{x} \mathrm{~d} x+\int \frac{1}{x-1} \mathrm{~d} x \\
& =-\log |x|+\log |x-1|+c \\
& =\log \left|\frac{x-1}{x}\right|+c
\end{aligned}
$$

$\operatorname{Try} \int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x$.

Partial fractions

- Start by writing in partial fraction form:

Partial fractions

$\int \frac{1}{x(x-1)^{2}} \mathrm{~d} x$

- Start by writing in partial fraction form:

$$
\begin{aligned}
\frac{1}{x(x-1)^{2}} & =\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}} \\
& =\frac{A(x-1)^{2}+B x(x-1)+C x}{x(x-1)^{2}}
\end{aligned}
$$

Partial fractions

$\int \frac{1}{x(x-1)^{2}} d x$

- Start by writing in partial fraction form:

$$
\begin{aligned}
\frac{1}{x(x-1)^{2}} & =\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}} \\
& =\frac{A(x-1)^{2}+B x(x-1)+C x}{x(x-1)^{2}}
\end{aligned}
$$

- Comparing numerators gives

$$
A+B+0 C=0 \quad-2 A-B+C=0 \quad A+0 B+0 C=1
$$

Partial fractions

$\int \frac{1}{x(x-1)^{2}} \mathrm{~d} x$

- Start by writing in partial fraction form:

$$
\begin{aligned}
\frac{1}{x(x-1)^{2}} & =\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}} \\
& =\frac{A(x-1)^{2}+B x(x-1)+C x}{x(x-1)^{2}}
\end{aligned}
$$

- Comparing numerators gives

$$
A+B+0 C=0 \quad-2 A-B+C=0 \quad A+0 B+0 C=1
$$

- Solve these equations to get $A=1, B=-1, C=1$.

Partial fractions

$\int \frac{1}{x(x-1)^{2}} d x$

- Start by writing in partial fraction form:

$$
\begin{aligned}
\frac{1}{x(x-1)^{2}} & =\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}} \\
& =\frac{A(x-1)^{2}+B x(x-1)+C x}{x(x-1)^{2}}
\end{aligned}
$$

- Comparing numerators gives

$$
A+B+0 C=0 \quad-2 A-B+C=0 \quad A+0 B+0 C=1
$$

- Solve these equations to get $A=1, B=-1, C=1$.
- Integrate term-by-term

$$
\int \frac{1}{x(x-1)^{2}} \mathrm{~d} x=\int \frac{1}{x} \mathrm{~d} x+\int \frac{-1}{x-1} \mathrm{~d} x+\int \frac{1}{(x-1)^{2}} \mathrm{~d} x
$$

Partial fractions

$$
\int \frac{1}{x(x-1)^{2}} \mathrm{~d} x
$$

- Integrate term-by-term

$$
\int \frac{1}{x(x-1)^{2}} \mathrm{~d} x=\int \frac{1}{x} \mathrm{~d} x+\int \frac{-1}{x-1} \mathrm{~d} x+\int \frac{1}{(x-1)^{2}} \mathrm{~d} x
$$

Partial fractions

$$
\int \frac{1}{x(x-1)^{2}} d x
$$

- Integrate term-by-term

$$
\begin{aligned}
\int \frac{1}{x(x-1)^{2}} \mathrm{~d} x & =\int \frac{1}{x} \mathrm{~d} x+\int \frac{-1}{x-1} \mathrm{~d} x+\int \frac{1}{(x-1)^{2}} \mathrm{~d} x \\
& =\log |x|-\log |x-1|-\frac{1}{x-1}+c \\
& =\log \left|\frac{x}{x-1}\right|+c
\end{aligned}
$$

HDout 100 Integrats
2. $\int x \sec ^{2} x d x$
4. $\int x \ln x^{2} d x$
6. $\int x^{2} \ln x d x$
8. $\int x e^{-x} d x$
10. $\int x^{2} \sin x d x$
12. $\int e^{x} \sin x d x$
14. $\int \frac{\sin x}{e^{x}} d x$
16. $\int t-3^{-t} d t$
18. $\int \log _{6} x d x$
20. $\int t^{2} \cosh ^{2} t d t$
22. $\int \sin ^{-1} 3 x d x$
6. $\int \frac{2 x^{3}+x^{2}+12}{x^{2}-4} d x$
8. $\int \frac{5 x}{(x-2)(x+3)} d x$
10. $\int \frac{2}{x^{2}-x-6} d x$

