Today

- Summary of resonance
- Introduction to systems of equations
- Direction fields
- Eigenvalues and eigenvectors
- Finding the general solution (distinct e-value case)

Midterm comments

- Avg 83\%
- Range 44-100\%
- Too easy; resonance.
- Learn log rules.
- Learn to check solutions.

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, with damping

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t \\
& x^{\prime \prime}+C x^{\prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \omega t \quad{\text { No conflict with } x_{n}(t) \text { ! }}^{m} \\
& x_{p}=A \cos \omega t+B \sin \omega t \\
& x_{p}^{\prime}=-\omega A \sin \omega t+\omega B \cos \omega t \\
& x_{p}^{\nu}=-\omega^{2} A \cos \omega t-\omega^{2} B \sin \omega t \\
& -\omega^{2} A \cos \omega t-\omega^{2} B \sin \omega t+C(-\omega A \sin \omega t+\omega b \cos \omega t) \\
& +\omega_{0}^{2}(A \cos \omega t+B \sin \omega t)=\frac{F_{0}}{m} \cos \omega t \\
& \underbrace{\left(-\omega^{2} A+c \omega B+\omega_{0}^{2} A\right)}_{\frac{F_{0}}{m}} \cos \omega t+\underbrace{\left(-\omega^{2} B-c \omega A+\omega_{0}^{2} B\right)}_{0} \sin \omega t=\frac{F_{0}}{m} \cos \omega t \\
& A=\frac{F_{0}}{m} \frac{\omega_{0}^{2}-\omega^{2}}{(C \omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)} \\
& B=\frac{F_{0}}{m} \frac{c \omega}{(C \omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)} \\
& x_{p}(t)=\frac{F_{0}}{M} \cdot \frac{1}{\sqrt{\left((\omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}\right.}}\left(\frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{\sqrt{\left.\left((\omega)^{2}+\left(\omega_{0}^{2}\right)^{2}\right)^{2}\right)^{2}}} \cos \omega t+c \omega \sin \operatorname{lo} \sqrt{\left((\omega)^{2}+\left(\omega^{2} \omega^{2}-\omega^{2}\right)^{2}\right.}\right)
\end{aligned}
$$

Forced vibrations, with damping

Amplitude of solution
$A m p=$
$\frac{F_{0}}{m \sqrt{(c \omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}}}$

Forced vibrations, with damping

Amplitude of solution
$A m p=$

Forced vibrations, with damping

Amplitude of solution
$A m p=$
$\frac{F_{0}}{m \sqrt{(c \omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}}}$

Forced vibrations, with damping

Amplitude of solution
$A m p=$
$\frac{F_{0}}{m \sqrt{(c \omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}}}$

Forced vibrations, with damping

Introduction to systems of equations

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=0
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
& x^{\prime}=v
\end{aligned}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
& x^{\prime}=v \\
& x^{\prime \prime}=v^{\prime}
\end{aligned}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
& x^{\prime}=v \\
& x^{\prime \prime}=v^{\prime}
\end{aligned}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \rightarrow m v^{\prime}+\gamma v+k x=0 \\
& x^{\prime}=v \\
& x^{\prime \prime}=v^{\prime}
\end{aligned}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{array}{lr}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \rightarrow m v^{\prime}+\gamma v+k x=0 \\
x^{\prime}=v \\
x^{\prime \prime}=v^{\prime} & v^{\prime}=-\frac{\gamma}{m} v-\frac{k}{m} x
\end{array}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \rightarrow m v^{\prime}+\gamma v+k x=0 \\
& x^{\prime}=v \\
& x^{\prime \prime}=v^{\prime} \\
& x^{\prime}=\quad v^{\prime}=-\frac{\gamma}{m} v-\frac{k}{m} x \\
& v^{\prime}=-\frac{k}{m} x-\frac{\gamma}{m} v
\end{aligned}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{array}{ll}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 & \rightarrow m v^{\prime}+\gamma v+k x=0 \\
x^{\prime}=v \\
x^{\prime \prime}=v^{\prime} & v^{\prime}=-\frac{\gamma}{m} v-\frac{k}{m} x \\
x^{\prime}= \\
v^{\prime}=-\frac{k}{m} x-\frac{\gamma}{m} v & \binom{x}{v}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{\gamma}{m}
\end{array}\right)\binom{x}{v}
\end{array}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v.

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v.
- position of an object in a plane (x, y coordinates) or three dimensional space (x, y, z coordinates).

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v.
- position of an object in a plane (x, y coordinates) or three dimensional space (x, y, z coordinates).
- positions of multiple objects (two or more masses linked by springs).

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v.
- position of an object in a plane (x, y coordinates) or three dimensional space (x, y, z coordinates).
- positions of multiple objects (two or more masses linked by springs).
- concentration in connected chambers (saltwater in multiple tanks, intracellular and extracellular, blood stream and organs).

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v.
- position of an object in a plane (x, y coordinates) or three dimensional space (x, y, z coordinates).
- positions of multiple objects (two or more masses linked by springs).
- concentration in connected chambers (saltwater in multiple tanks, intracellular and extracellular, blood stream and organs).
- populations of two species (e.g. predator and prey).

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\left(\frac{d x}{d t}\right)=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin \left(t y+t^{3}\right. & \frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y \notin \cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y<\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y-\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x-4 \sin y
\end{array}
$$

Introduction to systems of equations

- Any linear system can be written in matrix form:

$$
\begin{aligned}
& \frac{d x}{d t}=t^{2} x-y+\cos (2 t) \\
& \frac{d y}{d t}=x+4 \sin (t) y+t^{3}
\end{aligned}
$$

Introduction to systems of equations

- Any linear system can be written in matrix form:

$$
\begin{gathered}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} \\
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
t^{2} & -1 \\
1 & 4 \sin (t)
\end{array}\right)\binom{x}{y}+\binom{\cos (2 t)}{t^{3}}
\end{gathered}
$$

Introduction to systems of equations

- Any linear system can be written in matrix form:

$$
\begin{gathered}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} \\
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
t^{2} & -1 \\
1 & 4 \sin (t)
\end{array}\right)\binom{x}{y}+\binom{\cos (2 t)}{t^{3}} \\
L\left[\binom{x}{y}\right]=\frac{d}{d t}\binom{x}{y}-\left(\begin{array}{cc}
t^{2} & -1 \\
1 & 4 \sin (t)
\end{array}\right)\binom{x}{y}=\binom{\cos (2 t)}{t^{3}}
\end{gathered}
$$

Introduction to systems of equations

- Any linear system can be written in matrix form:

$$
\begin{gathered}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} \\
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
t^{2} & -1 \\
1 & 4 \sin (t)
\end{array}\right)\binom{x}{y}+\binom{\cos (2 t)}{t^{3}}
\end{gathered}
$$

- We'll focus on the case in which the matrix has constant entries. And homogeneous. For example,

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\mathbf{x}=\binom{2}{1}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\mathbf{x}=\binom{2}{1}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{2}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{2}{1}=\binom{3}{9}
\end{aligned}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{2}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{2}{1}=\binom{3}{9}
\end{aligned}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\mathbf{x}=\binom{1}{1}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- Ax gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

- Solutions must follow the arrows.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

- Solutions must follow the arrows.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

- Solutions must follow the arrows.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

- Solutions must follow the arrows.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

- Solutions must follow the arrows.

Introduction to systems of equations

- Which of the following equations matches the given direction field?
(A) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right)\binom{x}{y}$
(B) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)\binom{x}{y}$
(C) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\binom{x}{y}$
(D) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{x}{y}$
(E) Explain, please.

Introduction to systems of equations

- Which of the following equations matches the given direction field?

$$
\begin{aligned}
\text { (A) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (B) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (C) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y} \\
\hat{y}(\mathrm{D}) \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

(E) Explain, please.

Introduction to systems of equations

- Which of the following equations matches the given direction field?

$$
\begin{aligned}
\text { (A) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (B) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (C) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y} \\
\hat{y}(\mathrm{D}) \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

(E) Explain, please.

Introduction to systems of equations

- Which of the following equations matches the given direction field?

$$
\begin{aligned}
\text { (A) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (B) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (C) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y} \\
\hat{y}(\mathrm{D}) \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

(E) Explain, please.

Introduction to systems of equations

- You should see two "special" directions.

Introduction to systems of equations

- You should see two "special" directions.

Introduction to systems of equations

- You should see two "special" directions.

Introduction to systems of equations

- You should see two "special" directions.

Introduction to systems of equations

- You should see two "special" directions.
-What are they?

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
\lambda_{1} & =\sqrt{2} \\
\mathbf{v}_{\mathbf{1}} & =\binom{1}{\sqrt{2}-1}
\end{aligned}
$$

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
\lambda_{2} & =-\sqrt{2} \\
\mathbf{v}_{\mathbf{2}} & =\binom{1-\sqrt{2}}{1}
\end{aligned}
$$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.
- What are the eigenvalues of A ?
(A) 1 and -3
(B) -1 and 3
(C) 1 and 3
(D) -1 and -3
(E) Explain, please.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.
- What are the eigenvalues of A ?
(A) 1 and -3
(B) -1 and 3
(C) 1 and 3
(D) -1 and -3
(E) Explain, please.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
& A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
& (A-\lambda I) \mathbf{v}=\mathbf{0} \\
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 \\
& (1-\lambda)^{2}-4=0 \\
& \left(\lambda^{2}-2 \lambda-3=0\right) \\
& \lambda=1 \pm 2=-1,3
\end{aligned}
$$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
& A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
& (A-\lambda I) \mathbf{v}=\mathbf{0} \\
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 \\
& (1-\lambda)^{2}-4=0 \\
& \left(\lambda^{2}-2 \lambda-3=0\right) \\
& \lambda=1 \pm 2=-1,3
\end{aligned}
$$

- What are the eigenvectors associated with $\lambda_{1}=-1$?
(A) $\mathbf{v}_{\mathbf{1}}=\binom{1}{-2}$
(B) $\mathbf{v}_{\mathbf{1}}=c\binom{1}{-2}$
(C) $\mathbf{v}_{\mathbf{1}}=\binom{2}{1}$
(D) $\mathbf{v}_{\mathbf{1}}=c\binom{2}{1}$
(E) Explain, please.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{array}{ll}
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} & \begin{array}{l}
\text { What are the eigenvectors } \\
\text { associated with } \lambda_{1}=-1 ?
\end{array} \\
(A-\lambda I) \mathbf{v}=\mathbf{0} & \text { (A) } \mathbf{v}_{\mathbf{1}}=\binom{1}{-2} \\
\operatorname{det}(A-\lambda I)=0 & \text { (C) } \mathbf{v}_{\mathbf{1}}=\binom{2}{1} \\
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 & \text { (B) } \mathbf{v}_{\mathbf{1}}=c\binom{1}{-2} \\
(1-\lambda)^{2}-4=0 & \text { (D) } \mathbf{v}_{\mathbf{1}}=c\binom{2}{1}
\end{array}
$$

(E) Explain, please.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
& A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
& (A-\lambda I) \mathbf{v}=\mathbf{0} \\
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 \\
& (1-\lambda)^{2}-4=0 \\
& \left(\lambda^{2}-2 \lambda-3=0\right) \\
& \lambda=1 \pm 2=-1,3
\end{aligned}
$$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
& A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
& (A-\lambda I) \mathbf{v}=\mathbf{0} \\
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 \\
& (1-\lambda)^{2}-4=0 \\
& \left(\lambda^{2}-2 \lambda-3=0\right) \\
& \lambda=1 \pm 2=-1,3
\end{aligned}
$$

$$
\lambda_{1}=-1
$$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
& A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
& (A-\lambda I) \mathbf{v}=\mathbf{0} \\
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 \\
& (1-\lambda)^{2}-4=0 \\
& \left(\lambda^{2}-2 \lambda-3=0\right) \\
& \lambda=1 \pm 2=-1,3
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& (A+I) \mathbf{v}_{\mathbf{1}}=\left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right) \mathbf{v}_{\mathbf{1}}=0 \\
& \left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right) \sim\left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right) \\
& 2 v_{1}+v_{2}=0 \\
& \mathbf{v}_{\mathbf{1}}=\binom{1}{-2} \\
& \text { (and any scalar multiple of it) }
\end{aligned}
$$

(and any scalar multiple of it)

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.
$A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0}$
$(A-\lambda I) \mathbf{v}=\mathbf{0}$
$\operatorname{det}(A-\lambda I)=0$
$\operatorname{det}\left(\begin{array}{cc}1-\lambda & 1 \\ 4 & 1-\lambda\end{array}\right)=0$

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \mathbf{v}_{\mathbf{1}}=\binom{1}{-2}
\end{aligned}
$$

$$
\lambda_{2}=3
$$

$$
\mathbf{v}_{\mathbf{2}}=\binom{1}{2}
$$

$(1-\lambda)^{2}-4=0$
$\left(\lambda^{2}-2 \lambda-3=0\right)$
$\lambda=1 \pm 2=-1,3$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.
$A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0}$
$(A-\lambda I) \mathbf{v}=\mathbf{0}$
$\operatorname{det}(A-\lambda I)=0$
$\operatorname{det}\left(\begin{array}{cc}1-\lambda & 1 \\ 4 & 1-\lambda\end{array}\right)=0$
$(1-\lambda)^{2}-4=0$
$\left(\lambda^{2}-2 \lambda-3=0\right)$
$\lambda=1 \pm 2=-1,3$

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \mathbf{v}_{\mathbf{1}}=\binom{1}{-2}
\end{aligned}
$$

$$
\lambda_{2}=3
$$

$$
\mathbf{v}_{\mathbf{2}}=\binom{1}{2}
$$

- How do we use eigenvalues and eigenvectors to construct a general solution?

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

0

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}=x_{1}^{\prime}+x_{2}^{\prime}=x_{1}^{\prime}+4 x_{1}+x_{2} \\
& x_{2}=x_{1}^{\prime}-x_{1} \\
& x_{1}^{\prime \prime}=x_{1}^{\prime}+4 x_{1}+x_{1}^{\prime}-x_{1} \\
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \quad \rightarrow r^{2}-2 r-3=0
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{gathered}
x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
r=-1,3
\end{gathered}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{gathered}
x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
x_{1}=C_{1} e^{-t}+C_{2} e^{3 t}
\end{gathered}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{gathered}
x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
x_{1}=C_{1} e^{-t}+C_{2} e^{3 t}
\end{gathered}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=x_{1}^{\prime}-x_{1}=-C_{1} e^{-t}+3 C_{2} e^{3 t}-C_{1} e^{-t}-C_{2} e^{3 t} \\
& =-2 C_{1} e^{-t}+2 C_{2} e^{3 t}
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \quad \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=-2 C_{1} e^{-t}+2 C_{2} e^{3 t}
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \quad \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=-2 C_{1} e^{-t}+2 C_{2} e^{3 t} \\
& \mathbf{x}=\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=-2 C_{1} e^{-t}+2 C_{2} e^{3 t} \\
& \mathbf{x e c a l l :} \\
& \mathbf{x}=\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \quad \begin{array}{c}
\mathbf{v}_{\mathbf{1}}=\binom{1}{-2}
\end{array}
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \quad \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=-2 C_{1} e^{-t}+2 C_{2} e^{3 t} \\
& \mathbf{x}=\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \quad \begin{array}{|c}
\lambda_{1}=3 \\
\mathbf{v}_{\mathbf{1}}=\binom{1}{-2}
\end{array}
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \quad \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=-2 C_{1} e^{-t}+2 C_{2} e^{3 t} \\
& \mathbf{x}=\binom{x_{1}}{x_{2}}=C_{1} \varepsilon^{-t}\binom{1}{-2}+C_{2} 3 t\binom{1}{2} \quad \text { Recall: } \\
& \mathbf{v}_{\mathbf{1}}=\binom{1}{-2} \\
& \lambda_{2}=3 \\
& \mathbf{v}_{\mathbf{2}}=\binom{1}{2}
\end{aligned}
$$

Solving a system of ODEs

- You can use the second order trick for 2×2 but in general,

Solving a system of ODEs

- You can use the second order trick for 2×2 but in general,
- Find eigenvalues and eigenvectors of A,

Solving a system of ODEs

- You can use the second order trick for 2×2 but in general,
- Find eigenvalues and eigenvectors of A,
- Assemble general solution by summing up terms of the form

$$
C_{n} e^{\lambda_{n} t} \mathbf{v}_{\mathbf{n}}
$$

Solving a system of ODEs

- You can use the second order trick for 2×2 but in general,
- Find eigenvalues and eigenvectors of A,
- Assemble general solution by summing up terms of the form

$$
C_{n} e^{\lambda_{n} t} \mathbf{V}_{\mathbf{n}}
$$

- This works when eigenvalues are distinct or, if there are repeated eigenvalues still giving N independent eigenvectors.

Solving a system of ODEs

- You can use the second order trick for 2×2 but in general,
- Find eigenvalues and eigenvectors of A,
- Assemble general solution by summing up terms of the form

$$
C_{n} e^{\lambda_{n} t} \mathbf{V}_{\mathbf{n}}
$$

- This works when eigenvalues are distinct or, if there are repeated eigenvalues still giving N independent eigenvectors.
- Other cases (not enough e-vectors or complex e-values) next class.

