
Today

• Forced vibrations


• Forced mass-spring system without damping away from 
resonance.


• Forced mass-spring system without damping at resonance.


• Forced mass-spring system with damping.


• Midterm (Jan 31, in class) - everything up to and including Method of 
Undetermined Coefficients (but not applications to springs).



Applications - forced vibrations

• light hitting a molecular bond

• earthquake 
hitting a building

• pressure waves (sound) 
hitting a turning fork.
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Applications - vibrations, undamped

• Undamped mass spring

mx

00 + kx = 0
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Applications - vibrations, undamped

• Undamped mass spring

mx

00 + kx = 0

mr2 + k = 0

r = ±
r

k

m
i

x(t) = C1 cos(�0t) + C2 sin(�0t)

�0 =
r

k

m • increases with stiffness

• decreases with mass

• Natural frequency
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Applications - vibrations, undamped

sin(A + B) = sin(A) cos(B) + cos(A) sin(B)

cos(A + B) = cos(A) cos(B)� sin(A) sin(B)

Trig identity reminders
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Applications - vibrations, undamped

2 cos(3t + �/3) =

2 cos(�/3) cos(3t)� 2 sin(�/3) sin(3t)

= cos(3t)�
p

3 sin(3t)

sin(A + B) = sin(A) cos(B) + cos(A) sin(B)

cos(A + B) = cos(A) cos(B)� sin(A) sin(B)
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Applications - vibrations, undamped

• Converting from sum-of-sin-cos to a single cos expression:

4 cos(2t) + 3 sin(2t)

• Example: 

cos(A�B) = cos(A) cos(B) + sin(A) sin(B)
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Applications - vibrations, undamped

• Converting from sum-of-sin-cos to a single cos expression:

y(t) = C1 cos(�0t) + C2 sin(�0t)
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Applications - vibrations, undamped

• Step 1 - Factor out                                  .A =
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1 + C2
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• Undamped mass-springs oscillate sinusoidally with a natural 
frequency w0 and an amplitude determine by initial conditions.
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Forced vibrations

• Newton’s 2nd Law:

ma = �kx� �v +F (t)

mx00 + �x0 + kx = F (t)

spring force drag force applied/external force

• Forced vibrations - nonhomogeneous linear equation with constant 
coefficients.

• Building during earthquake, tuning fork near instrument, car over 
washboard road, polar bond under EM stimulus (classical, not 
quantum).



Forced vibrations, no damping

• Without damping (             ).� = 0

mx00
+ kx = F0 cos(�t)

forcing frequency

• For what value(s) of w does this equation have an unbounded solution?


(A) w = sqrt(k/m)


(B) w = m/F0


(C) w = (k/m)2


(D)  w = 2π
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Forced vibrations, no damping

• Without damping (             ).� = 0

mx00
+ kx = F0 cos(�t)

forcing frequency

• For what value(s) of w does this equation have an unbounded solution?


(A) w = sqrt(k/m)


(B) w = m/F0


(C) w = (k/m)2


(D)  w = 2π

• For w=sqrt(k/m), yp looks like

yp(x) = At cos(wt)

because the RHS is a solution to the 
homogeneous equation.
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