Today

« Forced vibrations

- Forced mass-spring system without damping away from
resonance.

- Forced mass-spring system without damping at resonance.
« Forced mass-spring system with damping.

- Midterm (Jan 31, in class) - everything up to and including Method of
Undetermined Coefficients (but not applications to springs).



Applications - forced vibrations

e
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- earthquake

» light hitting a molecular bond

§

« pressure waves (sound)

hitting a building

<

S ——y

hitting a turning fork.

2



Applications - vibrations, undamped

- Undamped mass spring

mz” + kxr =0



Applications - vibrations, undamped

- Undamped mass spring

mz” + kxr =0

A) x(t) = Cre ¥t 4 Che®o!
B) x(t) = Cie”“°" + Cote™¥0!
(C) x(t) = C1 cos(wot) + Cs sin(wpt)

(D) Don’t know.



Applications - vibrations, undamped

- Undamped mass spring
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kx =0

A) z(t) = Cre w0t + Chevo?

B) x(t) = Cie”“°" + Cote™¥0!

w (C) z(t) = Cq cos(wpt) + Cs sin(wot)

(D) Don’t know.
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Applications - vibrations, undamped

- Undamped mass spring

mz” + kxr =0

mr? + k=0

[ k.
= I\ —1
m

x(t) = C1 cos(wpt) + Cs sin(wpt)
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Applications - vibrations, undamped

- Undamped mass spring

mz” + kxr =0

mr? + k=0

[ k.
= I\ —1
m

x(t) = Cq cos(wot) + Cs sin(wot)
k

Wy = A/ —  Natural frequency
m

* increases with stiffness
 decreases with mass



Applications - vibrations, undamped

Trig identity reminders
sin(A 4+ B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)



Applications - vibrations, undamped

Trig identity reminders
sin(A 4+ B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)

2cos(3t +7/3) =
(A) 2sin(7/3) cos(3t) — 2sin(w/3) cos(3t
(B) 2sin(7/3) cos(3t) + 2sin(7/3) cos(3t

(E) Don’t know / still thinking.
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Applications - vibrations, undamped

Trig identity reminders
sin(A 4+ B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)

2cos(3t +7/3) =

W 2cos(m/3) cos(3t) — 2sin(n/3) sin(3t)
— cos(3t) — V/3sin(3t)



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

« Example:

4 cos(2t) + 3sin(2t)

cos(A — B) = cos(A) cos(B) + sin(A) sin(B)



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

« Example:

4 cos(2t) + 3sin(2t)

4

cos(A — B) :cos(B) —I—Sin(B)
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« Converting from sum-of-sin-cos to a single cos expression:

« Example:

4 cos(2t) + 3sin(2t)

cos(A — B) ‘COS 6SH1

(cos(A), sin(A)) must lie on the unit circle. i.e. cos?(A)+sin?(A



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

« Example:
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4% + 3% = 52
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Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

« Example:

4 cos(2t) + 3sin(2t)
3

.y (g cos(2t) + = Sin(2t)>

4% + 3% = 52

cos(A — B) ‘COS 6SH1

(cos(A), sin(A)) must lie on the unit circle. i.e. cos?(A)+sin?(A



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

- Example:
4 cos(2t) + 3sin(2t)
=5 (g cos(2t) + g Siﬂ(2t)>
= 5(cos(¢@) cos(2t) + sin(¢) sin(2t))

cos(A — B) = cos(A) cos(B) + sin(A) sin(B)



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

« Example:

4 cos(2t) + 3sin(2t)
=5 (% cos(2t) + g Siﬂ(2t)>

O
= 5(cos(¢) cos(2t) + sin(¢) sin(2t))
= Hcos(2t — ¢)

cos(A — B) = cos(A) cos(B) + sin(A) sin(B)



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

- Example:
4 cos(2t) 4 3sin(2t)
=5 <§ cos(2t) + g Sin(2t)> 3
= 5(cos(¢@) cos(2t) + sin(¢) sin(2t))

= 5 cos(2t — ¢)

cos(A — B) = cos(A) cos(B) + sin(A) sin(B)



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

« Example:
4 cos(2t) + 3sin(2t)
—5 <§ cos(2t) + gsin(Qt)> 3 2
= 5(cos(¢) cos(2t) + sin(¢) sin(2t))
4
= 5cos(2t — ¢) ¢ = 0.9273

cos(A — B) = cos(A) cos(B) + sin(A) sin(B)



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

y(t) = C cos(wot) + Cs sin(wpt)



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

y(t) = C cos(wot) + Cs sin(wpt)
- Step 1 - Factor out A = \/C'l2 Cs .




Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

y(t) = C cos(wot) + Cs sin(wpt)
- Step 1 - Factor out A = \/C'l2 Cs .

C
- Step 2 - Find the angle ¢ for which COS(¢) — 1

o, VCI+G3
i+ CE

and sin(¢)



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

y(t) = C cos(wot) + Cs sin(wpt)
- Step 1 - Factor out A = \/C'l2 Cs .

&
- Step 2 - Find the angle @ for which cos —
& (¢) T
and sin(¢) = C2
VCE+C3

+ Step 3 - Rewrite the solution as y(t) = A cos(wot — ¢).



Applications - vibrations, undamped

« Converting from sum-of-sin-cos to a single cos expression:

y(t) = C cos(wot) + Cs sin(wpt)
- Step 1 - Factor out A = \/C'l2 Cs .

&
- Step 2 - Find the angle @ for which cos —
& (¢) T
and sin(¢) = C2
VCE+C3

+ Step 3 - Rewrite the solution as y(t) = A cos(wot — ¢).

- Undamped mass-springs oscillate sinusoidally with a natural
frequency wo and an amplitude determine by initial conditions.



Applications - vibrations, damped

- Damped mass-spring

mx” + vz’ + kx =0 m, v,k >0
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Applications - vibrations, damped

- Damped mass-spring

ry2 =

mx”" + vz’ + kx =0
= mri4+yr+k=0

N \/72 — 4km

2m

2m

T
2m

m,v,k >0

(1 _




Applications - vibrations, damped

- Damped mass-spring

mx” + vz’ + kx =0 m, v,k >0
= mri4+yr+k=0

2 __
e B Vi ek L iy G
’ 2m 2m 2m

Always complex roots.
Always real roots.

Always one +, one - root.
Never exp growth.

E) Don’t know / still thinking.



Applications - vibrations, damped

- Damped mass-spring

mx” + vz’ + kx =0 m, v,k >0
= mri4+yr+k=0

y \/72 —4km Y dkm
1.2 — T = — | —1=x 1 5
’ 2m 2m 2m g

(A) Always complex roots. '\

B) Always real roots. smaller than 1
I

C) Always one +, one - root. or compiex

Never exp growth.
E) Don’t know / still thinking.



Applications - vibrations, damped

- Damped mass-spring

mx” + vz’ + kx =0 m, v,k >0
= mri4+yr+k=0

y \/72 —4km Y dkm
1.2 — T = — | —1=x 1 5
’ 2m 2m 2m g

(A) Always complex roots. / '\
B) Always real roots. negative or  smaller than 1
C) Always one +, one - root complex with or complex

neg real part
Never exp growth.

E) Don’t know / still thinking.



Applications - vibrations, damped

- Damped mass-spring

mx”" + vz’ + kx =0

m,v,k >0

= mri4+yr+k=0

Y V% dkm
ry2 = T
2m 2m
(A) Always complex roots.

)
B) Always real roots.

Never exp growth.

(
(C)

% (D)
(

Always one +, one - root.

E) Don’t know / still thinking.

~

2m

(o

/

negative or
complex with
neg real part

smaller than 1
or complex



Applications - vibrations, damped

- Damped mass-spring

mx”" + vz’ + kx =0

m,v,k >0

= mri4+yr+k=0

Y V% dkm
ry2 = T
2m 2m
(A) Always complex roots.

)
B) Always real roots.

Never exp growth.

(
(C)

% (D)
(

Always one +, one - root.

E) Don’t know / still thinking.

~

2m

(o

/

negative or
complex with
neg real part

smaller than 1
or complex

There are three cases...



Applications - vibrations, damped

4k
TlQl(l\/l m)
’ 2m y2




Applications - vibrations, damped

4k
7“12:—,y (1\/1 m)
! 2m y2

4
(i) k;n <1 — I, r2 <0, exponential decay only
! (over damped -7 large)
4km
(ii) - |
.. 4k
(iii) ;n > 1
.



Applications - vibrations, damped

Mma2=45_-1—1=< 5
2m Y

4k
(i) ;n <1 — I, r2 <0, exponential decay only
! (over damped -7 large)
. 4k
(1i) ;n =1 => ri=rz, exp and t*exp decay
v (critically damped)
4km

(i)



Applications - vibrations, damped

nma=5_-\1|—1= 5
2m Y

4
(i) k;n <1 — I, r2 <0, exponential decay only
! (over damped -7 large)
4km

(ii) = 1 —> r=r, exp and t"exp decay
(critically damped)

(i) —— >1 = r=ax

y
— <0
@ 2m




Applications - vibrations, damped

nma=5_-\1|—1= 5
2m Y

<1 — I, r2 <0, exponential decay only

2
! (over damped -7 large)
. 4dkm .
(ii) = 1 —> r=r, exp and t"exp decay
v (critically damped)
4 .
(i k;”>1 = r=qa+ 3
8
o = 2l < 0 = decaying oscillations

2m (under damped - 7Y small)



Applications - vibrations, damped

oy ( N \/1 4km
ra2g=—45—1|—1= 5
2m Y

4k
(i) ;n <1 — I, r2 <0, exponential decay only
! (over damped -7 large)
4km

(ii) = 1 —> r=r, exp and t"exp decay

(i) —— >1 = r=ax
8

(critically damped)

o = < 0 = decaying oscillations
2m (under damped -7 small)

z(t) = e (C} cos(Bt) + Cy sin(5t))



Applications - vibrations, damped

nma=5_-\1|—1= 5
2m Y

4
(i) k;n <1 — I, r2 <0, exponential decay only
! (over damped -7 large)
4km

(ii) = 1 —> r=r, exp and t"exp decay

i (critically damped)
! .
(iii) k;n>1 = r=ax
k Y
o = < 0 = decaying oscillations
2m (under damped -7 small)

z(t) = e (C} cos(Bt) + Cy sin(5t))

4km
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Applications - vibrations, damped

(i1

(i)

<1

> 1

nma=5_-\1|—1= 5
2m Y

—> 1, r2 <0, exponential decay only
(over damped -7 large)

—> r=r, exp and t"exp decay
(critically damped)

= r=a=x 3

o = 2l < 0 = decaying oscillations
2m (under damped -7 small)
z(t) = e (C} cos(Bt) + Cy sin(5t))

\ /

B = \/4]6:1 — 1 <«— called pseudo-frequency
”y 9




Applications - vibrations, damped

4km
7“172 — l —1 + 1 5
2m Y
. 4dkm .
(i) 57— <1 — I, r2 <0, exponential decay only
! (over damped -7 large)

(ii) = 1 —> r=r, exp and t"exp decay

v (critically damped)
. .
(iii) k;n>1 = r=ax
8
o = 2l < 0 = decaying oscillations
For graphs, see: 2m (under damped -7y small)
t .
https://www.desmos.com/ m(t) = e” (Cl COS(ﬁt) + Cy Sm(ﬁt))

B = — 1 <«— called pseudo-frequency
9

calculator/8v1nueimow
\/ 4km \ f
2
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Forced vibrations

 Newton’s 2nd Law:

ma = —kx — yv +F(t)
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Forced vibrations

 Newton’s 2nd Law:

ma = —kx — yv +F(t)

< 1

spring force drag force



Forced vibrations

 Newton’s 2nd Law:

ma = —kx — yv +F(t)

A AN

spring forcé  ya5'force  applied/external force
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mx' + vyx' + kx = F(t)



Forced vibrations

 Newton’s 2nd Law:

ma = —kx — yv +F(t)

SN

spring forcé  ya5'force  applied/external force
mx' + vyx' + kx = F(t)

 Forced vibrations - nonhomogeneous linear equation with constant
coefficients.



Forced vibrations

 Newton’s 2nd Law:

ma = —kx — yv +F(t)

SN

spring forcé  ya5'force  applied/external force
mx' + vyx' + kx = F(t)

 Forced vibrations - nonhomogeneous linear equation with constant
coefficients.

 Building during earthquake, tuning fork near instrument, car over
washboard road, polar bond under EM stimulus (classical, not

quantum).



Forced vibrations, no damping

» Without damping (7 = 0 )-/ forcing frequency

mx' + kx = Fy cos(wt)

- For what value(s) of w does this equation have an unbounded solution?
(A) w = sqrt(k/m)
(B) w = m/Fo
(C) w = (k/m)?

(D) w=2m



Forced vibrations, no damping

» Without damping (7 = 0 )-/ forcing frequency

mx' + kx = Fy cos(wt)
- For what value(s) of w does this equation have an unbounded solution?
W (A) w = sgrt(k/m)
(B) w = m/Fo
(C) w = (k/m)?

(D) w=2m



Forced vibrations, no damping

» Without damping (7 = 0 )-/ forcing frequency

max'” + kx = Fy cos(wt)

- For what value(s) of w does this equation have an unbounded solution?

w (A) w = sqrt(k/m) * For w=sqgrt(k/m), yp looks like
—— Uy (x) = At cos(wi)
because the RHS is a solution to the
(C) w = (k/m)? homogeneous eguation.

(D) w=2m



Forced vibrations, no damping, away from wo

» Without damping (7 = 0 )-/ forcing frequency

max'” + kx = Fy cos(wt)
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Forced vibrations, no damping, away from wo

» Without damping (v = 0 )./ forcing frequency
mx' + kx = Fy cos(wt)
mx” + kx =0
rp(t) = Ch cos(wot) + Co sin(wpt)



Forced vibrations, no damping, away from wo

- Without damping (v = 0 )./ forcing frequency
mx' + kx = Fy cos(wt)
mx” + kx =0
rp(t) = Cqcos(wot) + Cysin(wot)  wo =7



Forced vibrations, no damping, away from wo

» Without damping (7 = 0 )-/ forcing frequency
mx' + kx = Fy cos(wt)

mxz” + kx =0

k
11, (t) = Ci cos(wpt) + Casin(wot)  wo = 14/ -



Forced vibrations, no damping, away from wo

» Without damping (v = 0 )_/ forcing frequency
mx' + kx = Fy cos(wt)
mx” + kx =0
rp(t) = C7 cos(wpt) + Cosin(wpt)  wo = \/g
N\

natural frequency



Forced vibrations, no damping, away from wo

» Without damping (7 = 0 )-/ forcing frequency
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mz” + kx =0
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+ Case 1: W # wy \

natural frequency
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Forced vibrations, no damping, away from wo

» Without damping (7 = 0 )-/ forcing frequency

max'” + kx = Fy cos(wt)

mz” + kx =0
| k
'xh(t) — Cl COS(th) -+ 02 Siﬂ((,dot) Wy = E
+ Case 1: W # wy \

natural frequency

z,(t) = Acos(wt) + B sin(wt)
A =7 B ="



Forced vibrations, no damping, away from wo

» Without damping (7 = 0 )-/ forcing frequency

mx' + kx = Fy cos(wt)

mz” + kx =0
| k
Q?h(t) — Cl COS(th) -+ 02 Siﬂ((,dot) Wy = E
+ Case 1: W # wy \

natural frequency

z,(t) = Acos(wt) + B sin(wt)

x,(t) = —w? A cos(wt) — w? B sin(wt)



Forced vibrations, no damping, away from wo

» Without damping (7 = 0 )-/ forcing frequency

max'” + kx = Fy cos(wt)

mz” + kx =0
| k
Q?h(t) — Cl COS(th) -+ 02 Siﬂ((,dot) Wy = E
+ Case 1: W # wy \

natural frequency

z,(t) = Acos(wt) + B sin(wt)
x,(t) = —w? A cos(wt) — w? B sin(wt)
ng + kx,p, =



Forced vibrations, no damping, away from wo

» Without damping (7 = 0 )-/ forcing frequency

max'” + kx = Fy cos(wt)

mz” + kx =0
| k
xh(t) — Cl COS(th) -+ 02 Siﬂ(th) Wy = E
+ Case 1: W # wy \

natural frequency

z,(t) = Acos(wt) + B sin(wt)
x,(t) = —w? A cos(wt) — w? B sin(wt)
mx;, + kr, = (k — w?m)A cos(wt) + (k — w?*m) B sin(wt)



Forced vibrations, no damping, away from wo

» Without damping (v = 0 )_/ forcing frequency
mz' 4+ kx = Fy cos(wt)
mz" + kx =0
rp(t) = C7 cos(wpt) + Cosin(wpt)  wo = \/g

+ Case 1: W # wy \
xp(t) — Acos(wt) 4 Bsin(wt) natural frequency
:cg(t) = —w?Acos(wt) — w? B sin(wt)

mx;, + kr, = (k — w?m)A cos(wt) + (k — w?*m) B sin(wt)
= F{ cos(wt)



Forced vibrations, no damping, away from wo

» Without damping (7 = 0 )-/ forcing frequency

mx' + kx = Fy cos(wt)

mz” + kx =0
| k
xh(t) — Cl COS(th) -+ 02 Siﬂ(th) Wy = E
+ Case 1: W # wy \

natural frequency

z,(t) = Acos(wt) + B sin(wt)

x,(t) = —w? A cos(wt) — w? B sin(wt)

mx;, + kr, = (k — w?m)A cos(wt) + (k — w?*m) B sin(wt)
Fq
(k — w?m)

= Fpcos(wt) = A =



Forced vibrations, no damping, away from wo

» Without damping (7 = 0 )-/ forcing frequency

mx' + kx = Fy cos(wt)

mz” + kx =0
| k
xh(t) — Cl COS(th) -+ 02 Siﬂ(th) Wy = E
+ Case 1: W # wy \

natural frequency

z,(t) = Acos(wt) + B sin(wt)

x,(t) = —w? A cos(wt) — w? B sin(wt)

mx;, + kr, = (k — w?m)A cos(wt) + (k — w?*m) B sin(wt)
ko ko

= I ) = A= —
0 cos(wh) (k —w?m) m(wi —w?)



Forced vibrations, no damping, away from wo

» Without damping (7 = 0 )-/ forcing frequency

max'” + kx = Fy cos(wt)

mz” + kx =0
zp,(t) = Cp cos(wot) + Cosin(wot)  wo = \/g

+ Case 1: W # Wy \
z,(t) = Acos(wt) + Bsin(wt) natural frequency
leo/(t) = —w’A cos(wt) — w’B sin(wt) B =0
mx, + kx, = (k —w?m)Acos(wt) + (k — w?m)B sin(wt)

Fo Fo

=i t) = A= =
0 cos(wt) (k —w?m) m(wi —w?)
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- A simple IC:
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Forced vibrations, no damping, away from wo

» Without damping (v = 0 ), w # wy .

- AsimpleIC:  z(0) =2'(0)=0 = C; =

x(t) =

(cos(wt) — cos(wopt))

m(wg — w?)



Forced vibrations, no damping, away from wo

» Without damping (v = 0 ), w # wy .

- AsimpleIC:  z(0) =2'(0)=0 = C; =

)= g (g ) o (5)

m(wo —



Forced vibrations, no damping, away from wo

» Without damping (v = 0 ), w # wy .

- AsimpleIC:  z(0) =2'(0)=0 = C; =

)= g (g ) o (5)

m(wo —
N— B

—

amplitude envelope




Forced vibrations, no damping, away from wo

» Without damping (v = 0), w # wy.

- AsimpleIC:  z(0) =2'(0)=0 = C; =

)= g (g ) o (5)

m(w§ —

When wo=w --> beats

.nﬂlrﬁﬂ 1 ﬁnnﬂy‘
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Forced vibrations, no damping, away from wo

» Without damping (v = 0 ), w # wy .

- AsimpleIC:  z(0) =2'(0)=0 = C; =

)= g (g ) o (5)

m(w§ —

When wo=w --> beats

fﬂ ﬂ | ﬂ | https://
- | DS:
i\/\_«/\_z_;rvv\'\/\/\z&/\/\}z www.desmos.com/
v | y calculator/

U U /PUWZ/yjvu



https://www.desmos.com/calculator/7puwz7yjvu

Forced vibrations, no damping, w=wo

- Without damping (v = 0), w = wyg -



Forced vibrations, no damping, w=wo

- Without damping (v = 0), w = wyg -

k
max” + kx = Fy cos(wot) wo = (| —
m



Forced vibrations, no damping, w=wo

- Without damping (v = 0), w = wyg -

F k
2" + wir = = cos(wpt) wo =1/ —
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Forced vibrations, no damping, w=wo
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Forced vibrations, no damping, w=wo

- Without damping (v = 0 ), w = wyg-

- Long term behaviour - X, grows unbounded, swamping out Xxn.

T,(t) = tsin(wot) |

2/ km n ) (|

qxoic!\/vw\/v\zoﬁ
|

|2 - u




Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of w.

A(W)

« Calculated:

Fo
A= 5

m(w§ — w?)

* Plotted with:

F
-9 — 1, Wy — 1
T
1
AW =15z 03

« Recall that for w = wq, the

amplitude grows without
bound.
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Forced vibrations, with damping

o YKLk = Focosewot
Ve cx! fwlx= B coswt flo conthet Wik Xnt)!

A
7(9: AQOS o\){f + Gswnwt

\(q' = - wAS mm'li + l«)f\)b(,oﬁwf
¥y = —wrAcoset —wrEs met
= 1*6\ (oS w‘[’ - wLBQ MN'L + C(—\QA gu\mf +0b LO$‘OJC>

+ uo:'(bv(t»w'{'f*’ & sin 00‘[7\ = {:_,o ore wt

M\
Q_—w"A +cwd +L5‘,A/>C0$w{‘,+(-' \A"ﬁ—cmA Qg ’\’)3 s««wf:%\c_oew'(:

— & ——————

et

" O

1
A= F _ Wo-W

™ (Cw r(wES)
= ﬁ,_ o C
~ (Goy e (wES)
(_H__ \?o_ _ . (u}‘-w’j coswf ij Sw\tu>
)(Q M {(eoy+(W5- JEo e (W W) Joo\+ (Wi WY




Forced vibrations, with damping
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