Today

- Forced vibrations
- Forced mass-spring system without damping away from resonance.
- Forced mass-spring system without damping at resonance.
- Forced mass-spring system with damping.
- Midterm (Jan 31, in class) - everything up to and including Method of Undetermined Coefficients (but not applications to springs).

Applications - forced vibrations

- light hitting a molecular bond

Applications - vibrations, undamped

- Undamped mass spring

$$
m x^{\prime \prime}+k x=0
$$

Applications - vibrations, undamped

- Undamped mass spring

$$
m x^{\prime \prime}+k x=0
$$

(A) $x(t)=C_{1} e^{-\omega_{0} t}+C_{2} e^{\omega_{0} t}$
(B) $x(t)=C_{1} e^{-\omega_{0} t}+C_{2} t e^{-\omega_{0} t}$
(C) $x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)$
(D) Don't know.

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

Applications - vibrations, undamped

- Undamped mass spring

$$
m x^{\prime \prime}+k x=0
$$

(A) $x(t)=C_{1} e^{-\omega_{0} t}+C_{2} e^{\omega_{0} t}$
(B) $x(t)=C_{1} e^{-\omega_{0} t}+C_{2} t e^{-\omega_{0} t}$
(C) $x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)$
(D) Don't know.

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

Applications - vibrations, undamped

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0
\end{gathered}
$$

Applications - vibrations, undamped

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0 \\
r= \pm \sqrt{\frac{k}{m}} i
\end{gathered}
$$

Applications - vibrations, undamped

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0 \\
r= \pm \sqrt{\frac{k}{m}} i \\
x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
\end{gathered}
$$

Applications - vibrations, undamped

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0 \\
r= \pm \sqrt{\frac{k}{m}} i \\
x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \\
\omega_{0}=\sqrt{\frac{k}{m}}
\end{gathered}
$$

Applications - vibrations, undamped

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0 \\
r= \pm \sqrt{\frac{k}{m}} i \\
x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
\end{gathered}
$$

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

- Natural frequency
- increases with stiffness
- decreases with mass

Applications - vibrations, undamped

Trig identity reminders

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

Applications - vibrations, undamped

Trig identity reminders

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

$2 \cos (3 t+\pi / 3)=$
(A) $2 \sin (\pi / 3) \cos (3 t)-2 \sin (\pi / 3) \cos (3 t)$
(B) $2 \sin (\pi / 3) \cos (3 t)+2 \sin (\pi / 3) \cos (3 t)$
(C) $2 \cos (\pi / 3) \cos (3 t)-2 \sin (\pi / 3) \sin (3 t)$
(D) $2 \cos (\pi / 3) \cos (3 t)+2 \sin (\pi / 3) \sin (3 t)$
(E) Don’t know / still thinking.

Applications - vibrations, undamped

Trig identity reminders

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

$2 \cos (3 t+\pi / 3)=$
(A) $2 \sin (\pi / 3) \cos (3 t)-2 \sin (\pi / 3) \cos (3 t)$
(B) $2 \sin (\pi / 3) \cos (3 t)+2 \sin (\pi / 3) \cos (3 t)$
T. (C) $2 \cos (\pi / 3) \cos (3 t)-2 \sin (\pi / 3) \sin (3 t)$
(D) $2 \cos (\pi / 3) \cos (3 t)+2 \sin (\pi / 3) \sin (3 t)$
(E) Don’t know / still thinking.

Applications - vibrations, undamped

Trig identity reminders

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

$2 \cos (3 t+\pi / 3)=$

๗ $2 \cos (\pi / 3) \cos (3 t)-2 \sin (\pi / 3) \sin (3 t)$

$$
=\cos (3 t)-\sqrt{3} \sin (3 t)
$$

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
4 \cos (2 t)+3 \sin (2 t)
$$

$$
\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
$$

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
4 \cos (2 t)+3 \sin (2 t)
$$

$$
\cos (A-B)=\frac{4}{\cos (A) \cos (B)+\frac{3}{\sin (A)} \sin (B)}
$$

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
4 \cos (2 t)+3 \sin (2 t)
$$

$$
\cos (A-B)=\frac{\not \partial}{\cos (A} \cos (B)+\frac{\not \partial}{\sin (A)} \sin (B)
$$

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
4 \cos (2 t)+3 \sin (2 t)
$$

$$
\cos (A-B)=\begin{gathered}
\not 4^{2}+3^{2}=5^{2} \\
\cos (A) \cos (B)+\sin (A) \sin (B)
\end{gathered}
$$

$(\cos (A), \sin (A))$ must lie on the unit circle. i.e. $\cos ^{2}(A)+\sin ^{2}(A)=1$.

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right)
\end{aligned}
$$

$$
\begin{gathered}
\not \not 4^{2}+3^{2}=5^{2} \\
\cos (A-B)=\underset{\sim}{\cos (A} \cos (B)+\sin (B)
\end{gathered}
$$

$(\cos (A), \sin (A))$ must lie on the unit circle. i.e. $\cos ^{2}(A)+\sin ^{2}(A)=1$.

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right) \\
& \quad=5(\cos (\phi) \cos (2 t)+\sin (\phi) \sin (2 t))
\end{aligned}
$$

$$
\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
$$

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right) \\
& \quad=5(\cos (\phi) \cos (2 t)+\sin (\phi) \sin (2 t)) \\
& \quad=5 \cos (2 t-\phi)
\end{aligned}
$$

$$
\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
$$

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right) \\
& \quad=5(\cos (\phi) \cos (2 t)+\sin (\phi) \sin (2 t)) \\
& \quad=5 \cos (2 t-\phi)
\end{aligned}
$$

$$
\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
$$

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right) \\
& \quad=5(\cos (\phi) \cos (2 t)+\sin (\phi) \sin (2 t)) \\
& \quad=5 \cos (2 t-\phi)
\end{aligned}
$$

$$
\frac{4}{3}
$$

$$
\phi=0.9273
$$

$$
\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
$$

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

- Step 1 - Factor out $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$.

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

- Step 1 - Factor out $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$.
- Step 2 - Find the angle ϕ for which $\cos (\phi)=\frac{C_{1}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}$

$$
\text { and } \sin (\phi)=\frac{C_{2}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}
$$

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

- Step 1 - Factor out $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$.
- Step 2 - Find the angle ϕ for which $\cos (\phi)=\frac{C_{1}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}$

$$
\text { and } \sin (\phi)=\frac{C_{2}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}
$$

- Step 3 - Rewrite the solution as $y(t)=A \cos \left(\omega_{0} t-\phi\right)$.

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

- Step 1 - Factor out $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$.
- Step 2 - Find the angle ϕ for which $\cos (\phi)=\frac{C_{1}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}$
C_{2}

$$
\text { and } \sin (\phi)=\frac{C_{2}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}
$$

- Step 3 - Rewrite the solution as $y(t)=A \cos \left(\omega_{0} t-\phi\right)$.
- Undamped mass-springs oscillate sinusoidally with a natural frequency w_{0} and an amplitude determine by initial conditions.

Applications - vibrations, damped

- Damped mass-spring

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \quad m, \gamma, k>0
$$

Applications - vibrations, damped

- Damped mass-spring

$$
\begin{gathered}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \quad m, \gamma, k>0 \\
\Rightarrow m r^{2}+\gamma r+k=0
\end{gathered}
$$

Applications - vibrations, damped

- Damped mass-spring

$$
\begin{gathered}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \quad m, \gamma, k>0 \\
\Rightarrow m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}
\end{gathered}
$$

Applications - vibrations, damped

- Damped mass-spring

$$
\begin{gathered}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
\Rightarrow m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
\end{gathered}
$$

Applications - vibrations, damped

- Damped mass-spring

$$
\begin{gathered}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
\Rightarrow m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
\end{gathered}
$$

(A) Always complex roots.
(B) Always real roots.
(C) Always one +, one - root.
(D) Never exp growth.
(E) Don't know / still thinking.

Applications - vibrations, damped

- Damped mass-spring

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
& \Rightarrow m, \gamma, k>0 \\
& r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right) \\
& \text { (A) Always complex roots. } \\
& \text { (B) Always real roots. } \\
& \text { (C) Always one +, one - root. } \\
& \text { (D) Never exp growth. } \\
& \text { (E) Don't know / still thinking. }
\end{aligned}
$$

Applications - vibrations, damped

- Damped mass-spring

$$
\begin{array}{cc}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 & m, \gamma, k>0 \\
\Rightarrow \quad m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right) \\
\text { (A) Always complex roots. } & \begin{array}{c}
\text { negative or } \\
\text { (B) Always real roots. }
\end{array} \\
\text { (C) Always one +, one - root. } & \text { nemplex with real part } \\
\text { or complex } 1 \\
\text { (D) Never exp growth. } & \\
\text { (E) Don't know / still thinking. } &
\end{array}
$$

Applications - vibrations, damped

- Damped mass-spring

$$
\begin{array}{cc}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 & m, \gamma, k>0 \\
\Rightarrow \quad m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right) \\
\text { (A) Always complex roots. } & \begin{array}{c}
\text { negative or } \\
\text { complex with } \\
\text { neg real part }
\end{array}
\end{array}
$$

(D) Never exp growth.
(E) Don't know / still thinking.

Applications - vibrations, damped

- Damped mass-spring

$$
\begin{array}{cc}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 & m, \gamma, k>0 \\
\Rightarrow \quad m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right) \\
\text { (A) Always complex roots. } & \begin{array}{c}
\text { negative or } \\
\text { complex with } \\
\text { neg real part }
\end{array}
\end{array}
$$

There are three cases...

Applications - vibrations, damped

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
(ii) $\frac{4 k m}{\gamma^{2}}=1$
(iii) $\frac{4 k m}{\gamma^{2}}>1$

Applications - vibrations, damped

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1 \quad \Rightarrow \quad r_{1}, r_{2}<0, \begin{array}{r}\text { exponential decay only } \\ \text { (over damped }-\gamma \text { large) }\end{array}$
(ii) $\frac{4 k m}{\gamma^{2}}=1$
(iii) $\frac{4 k m}{\gamma^{2}}>1$

Applications - vibrations, damped

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1 \quad \Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only $\begin{array}{r}\text { (over damped }-\gamma \text { large) }\end{array}$
(ii) $\frac{4 k m}{\gamma^{2}}=1 \quad \Rightarrow \quad r_{1}=r_{2}, \exp$ and $t^{*} \exp$ decay (critically damped)
(iii) $\frac{4 k m}{\gamma^{2}}>1$

Applications - vibrations, damped

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1 \quad \Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only \quad (over damped $-\gamma$ large)
(ii) $\frac{4 k m}{\gamma^{2}}=1 \quad \Rightarrow \quad \mathrm{r}_{1}=\mathrm{r}_{2}$, exp and $\mathrm{t}^{*} \exp$ decay (critically damped)
(iii) $\frac{4 k m}{\gamma^{2}}>1 \Rightarrow r=\alpha \pm \beta i$

$$
\alpha=-\frac{\gamma}{2 m}<0
$$

Applications - vibrations, damped

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1 \quad \Rightarrow \quad r_{1}, r_{2}<0, \begin{gathered}\text { exponential decay only } \\ \text { (over damped }-\gamma \text { large) }\end{gathered}$
(ii) $\frac{4 k m}{\gamma^{2}}=1 \quad \Rightarrow \quad r_{1}=r_{2}, \exp$ and $\mathrm{t}^{\star} \exp$ decay (critically damped)
(iii) $\frac{4 k m}{\gamma^{2}}>1 \Rightarrow r=\alpha \pm \beta i$

$$
\alpha=-\frac{\gamma}{2 m}<0 \Rightarrow \underset{\substack{\text { decaying oscillations } \\ \text { (under damped }-\gamma \text { small) }}}{\text { s. }}
$$

Applications - vibrations, damped

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1 \quad \Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only (over damped - γ large)
$\begin{array}{lll}\text { (ii) } \frac{4 k m}{\gamma^{2}}=1 & \Rightarrow r_{1}=r_{2}, \exp \operatorname{and} \\ \text { (iii) } \frac{4 k m}{\gamma^{2}}>1 & \Rightarrow r=\alpha \pm \beta i\end{array}$

$$
\begin{aligned}
\alpha= & -\frac{\gamma}{2 m}<0 \Rightarrow \begin{array}{c}
\text { decaying oscillations } \\
\text { (under damped }-\gamma \text { small) }
\end{array} \\
& x(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right)
\end{aligned}
$$

Applications - vibrations, damped

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1 \quad \Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only (over damped - γ large)
$\begin{array}{ll}\text { (ii) } \frac{4 k m}{\gamma^{2}}=1 & \Rightarrow \quad r_{1}=r_{2}, \exp \text { and } \\ \text { (iii) } \frac{4 k m}{\gamma^{2}}>1 & \Rightarrow r=\alpha \pm \beta i\end{array}$

$$
\begin{aligned}
& \alpha=-\frac{\gamma}{2 m}<0 \Rightarrow \text { decaying oscillations } \\
& \text { (under damped }-\gamma \text { small) } \\
& x(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right) \\
& \beta=\sqrt{\frac{4 k m}{\gamma^{2}}-1}
\end{aligned}
$$

Applications - vibrations, damped

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1 \quad \Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only
(ii) $\frac{4 k m}{\gamma^{2}}=1 \quad \Rightarrow \quad \mathrm{r}_{1}=\mathrm{r}_{2}, \exp \underset{\text { and } \mathrm{t}^{*} \text { exp decay }}{\text { (critically damped) }}$
(iii) $\frac{4 k m}{\gamma^{2}}>1 \quad \Rightarrow \quad r=\alpha \pm \beta i$

$$
\begin{aligned}
& \alpha=-\frac{\gamma}{2 m}<0 \Rightarrow \begin{array}{c}
\text { decaying oscillations } \\
\text { (under damped }-\gamma \text { small) }
\end{array} \\
& x(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right) \\
& \beta=\sqrt{\frac{4 k m}{\gamma^{2}}-1} \longleftarrow \text { called pseudo-frequency }
\end{aligned}
$$

Applications - vibrations, damped

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1 \quad \Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only \quad (over damped $-\gamma$ large)
(ii) $\frac{4 k m}{\gamma^{2}}=1 \quad \Rightarrow \quad r_{1}=r_{2}$, exp and $\mathrm{t}^{*} \exp$ decay (critically damped)

For graphs, see:

$$
\Rightarrow r=\alpha \pm \beta i
$$

(iii) $\frac{4 k m}{\gamma^{2}}>1 \quad \Rightarrow \quad r=\alpha \pm \beta i$ https://www.desmos.com/ calculator/8v1nueimow

$$
\begin{aligned}
\alpha= & -\frac{\gamma}{2 m}<0 \Rightarrow \begin{array}{c}
\text { decaying oscillations } \\
\text { (under damped }-\gamma \text { small) }
\end{array} \\
& x(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right) \\
\beta= & \sqrt{\frac{4 k m}{\gamma^{2}}-1} \longleftarrow \text { called pseudo-frequency }
\end{aligned}
$$

Forced vibrations

- Newton's 2nd Law:

$$
m a=-k x-\gamma v+F(t)
$$

Forced vibrations

- Newton's 2nd Law:

$$
m a=-k x-\gamma v+F(t)
$$

spring force

Forced vibrations

- Newton's 2nd Law:

Forced vibrations

- Newton's 2nd Law:

Forced vibrations

- Newton's 2nd Law:

Forced vibrations

- Newton's 2nd Law:

- Forced vibrations - nonhomogeneous linear equation with constant coefficients.

Forced vibrations

- Newton's 2nd Law:

- Forced vibrations - nonhomogeneous linear equation with constant coefficients.
- Building during earthquake, tuning fork near instrument, car over washboard road, polar bond under EM stimulus (classical, not quantum).

Forced vibrations, no damping

- Without damping $(\gamma=0)$. forcing frequency

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

- For what value(s) of w does this equation have an unbounded solution?
(A) $w=\operatorname{sqrt}(k / m)$
(B) $w=m / F_{0}$
(C) $w=(k / m)^{2}$
(D) $w=2 \pi$

Forced vibrations, no damping

- Without damping $(\gamma=0)$. forcing frequency

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

- For what value(s) of w does this equation have an unbounded solution?
s (A) $w=\operatorname{sqrt}(k / m)$
(B) $w=m / F_{0}$
(C) $w=(k / m)^{2}$
(D) $w=2 \pi$

Forced vibrations, no damping

- Without damping $(\gamma=0)$.
forcing frequency
- For what value(s) of w does this equation have an unbounded solution?
$\hat{\imath}(A) w=\operatorname{sqrt}(k / m)$
(B) $w=m / F_{0}$
(C) $w=(k / m)^{2}$
(D) $w=2 \pi$
- For $w=s q r t(k / m), y_{p}$ looks like

$$
y_{p}(x)=A t \cos (w t)
$$

because the RHS is a solution to the homogeneous equation.

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$. forcing frequency

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$. forcing frequency
$m x^{\prime \prime}+k x=F_{0} \cos (\omega t)$
$m x^{\prime \prime}+k x=0$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.
forcing frequency
$m x^{\prime \prime}+k x=F_{0} \cos (\omega t)$
$m x^{\prime \prime}+k x=0$
$x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.
forcing frequency

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=?
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.
forcing frequency

$$
\begin{aligned}
& m x^{\prime \prime}+k x=F_{0} \cos (\omega t) \\
& m x^{\prime \prime}+k x=0 \\
& x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping ($\gamma=0$).
forcing frequency

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

natural frequency

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.
forcing frequency

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
x_{p}(t)=A \cos (\omega t)+B \sin (\omega t)
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& A=?, B=?
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t)
\end{aligned}
$$

natural frequency

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
& m x_{p}^{\prime \prime}+k x_{p}=
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
& m x_{p}^{\prime \prime}+k x_{p}=\left(k-\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t)
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& \begin{aligned}
x_{p}^{\prime \prime}(t) & =-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
m x_{p}^{\prime \prime}+k x_{p} & =\left(k-\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t) \\
& =F_{0} \cos (\omega t)
\end{aligned}
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
& m x_{p}^{\prime \prime}+k x_{p}=\left(k-\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t) \\
& \quad=F_{0} \cos (\omega t) \Rightarrow A=\frac{F_{0}}{\left(k-\omega^{2} m\right)}
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& \begin{aligned}
x_{p}^{\prime \prime}(t) & =-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
m x_{p}^{\prime \prime}+k x_{p} & =\left(k-\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t) \\
& =F_{0} \cos (\omega t) \Rightarrow A=\frac{F_{0}}{\left(k-\omega^{2} m\right)}=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
\end{aligned}
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& \begin{aligned}
x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) & B=0 \\
m x_{p}^{\prime \prime}+k x_{p} & =\left(k-\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t) \\
& =F_{0} \cos (\omega t) \Rightarrow A=\frac{F_{0}}{\left(k-\omega^{2} m\right)}=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
\end{aligned}
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.
- A simple IC:

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.
- A simple IC: $\quad x(0)=x^{\prime}(0)=0$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.
- A simple IC: $x(0)=x^{\prime}(0)=0 \Longrightarrow C_{1}=-\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}, \quad C_{2}=0$.

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.
- A simple IC: $\quad x(0)=x^{\prime}(0)=0 \Longrightarrow C_{1}=-\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}, \quad C_{2}=0$.

$$
x(t)=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.
- A simple IC: $\quad x(0)=x^{\prime}(0)=0 \Longrightarrow C_{1}=-\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}, \quad C_{2}=0$.
$x(t)=\frac{2 F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)} \sin \left(\frac{\left(\omega_{0}-\omega\right) t}{2}\right) \sin \left(\frac{\left(\omega_{0}+\omega\right) t}{2}\right)$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.

$$
\begin{aligned}
& \text { - A simple IC: } \quad x(0)=x^{\prime}(0)=0 \Longrightarrow C_{1}=-\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}, C_{2}=0 . \\
& x(t)=\underbrace{\frac{2 F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)} \sin \left(\frac{\left(\omega_{0}-\omega\right) t}{2}\right)}_{\text {amplitude envelope }} \sin \left(\frac{\left(\omega_{0}+\omega\right) t}{2}\right)
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.
- A simple IC: $x(0)=x^{\prime}(0)=0 \Longrightarrow C_{1}=-\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}, \quad C_{2}=0$.
$x(t)=\frac{2 F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)} \sin \left(\frac{\left(\omega_{0}-\omega\right) t}{2}\right) \sin \left(\frac{\left(\omega_{0}+\omega\right) t}{2}\right)$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.
- A simple IC: $x(0)=x^{\prime}(0)=0 \Longrightarrow C_{1}=-\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}, \quad C_{2}=0$.

$$
x(t)=\frac{2 F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)} \sin \left(\frac{\left(\omega_{0}-\omega\right) t}{2}\right) \sin \left(\frac{\left(\omega_{0}+\omega\right) t}{2}\right)
$$

https://
www.desmos.com/ calculator/ 7puwz7yivu

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
m x^{\prime \prime}+k x=F_{0} \cos \left(\omega_{0} t\right)
$$

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

RHS solves the homogenous equation:

$$
\begin{gathered}
r^{2}+\omega_{0}^{2}=0 \\
r= \pm \omega_{0} i
\end{gathered}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
\begin{array}{ll}
x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) & \omega_{0}=\sqrt{\frac{k}{m}} \\
x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) &
\end{array}
$$

RHS solves the homogenous equation:

$$
\begin{gathered}
r^{2}+\omega_{0}^{2}=0 \\
r= \pm \omega_{0} i
\end{gathered}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)
\end{aligned}
$$

$$
+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& \begin{aligned}
& x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
& \quad+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{aligned} \\
& x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)
\end{aligned}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
& \quad+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
& \begin{aligned}
x_{p}^{\prime \prime}(t) & =-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right) \\
& +\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{aligned}
\end{aligned}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& \begin{array}{r}
x_{p}^{\prime}(t)
\end{array}=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
& \quad+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
& \begin{array}{r}
x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right) \\
+\left(-\omega_{0} B \cos \left(\omega_{0} t\right)\right.
\end{array} \\
& \quad+t\left(-\omega_{0}^{2} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)-\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)
\end{aligned}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+D \sin \left(\omega_{0} t\right)\right)
\end{aligned} \begin{array}{r}
x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
\quad+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
\begin{aligned}
& x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right) \\
&+\omega_{0} B \cos \left(\omega_{0} t\right)
\end{aligned} \\
+\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
\quad+t\left(-\omega_{0}^{2} A \cos \left(\omega_{0} t\right)-\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)
\end{array}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
& +t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
& x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right) \\
& +\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
& +t\left(-\omega_{0}^{2} A \cos \left(\omega_{0} t\right)-\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)
\end{aligned}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
\begin{aligned}
& \begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)= t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right)
\end{aligned} \\
& \begin{array}{r}
x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{array} \\
& \begin{array}{r}
x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right) \\
+\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{array} \quad+t\left(-\omega_{0}^{2} A \cos \left(\omega_{0} t\right)-\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)
\end{aligned} \begin{array}{r}
\begin{array}{r}
A=0 \\
B=
\end{array} \begin{array}{l}
F_{0}=\frac{F_{0}}{2 \omega_{0} m}=
\end{array}
\end{array}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
\begin{aligned}
& \begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)= t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right)
\end{aligned} \\
& \begin{array}{r}
x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{array} \\
& \begin{array}{r}
x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right) \\
+\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{array} \\
& \quad+\frac{t\left(-\omega_{0}^{2} A \cos \left(\omega_{0} t\right)\right.}{\left.\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)} \\
& \begin{array}{r}
A=0 \\
B=
\end{array} \\
& x_{p}(t)=\frac{F_{0}}{2 \omega_{0} m}=\frac{F_{0}}{2 \sqrt{k m}} t \sin \left(\omega_{0} t\right)
\end{aligned}
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.
- Long term behaviour $-\mathrm{x}_{\mathrm{p}}$ grows unbounded, swamping out x_{h}.

$$
x_{p}(t)=\frac{F_{0}}{2 \sqrt{k m}} t \sin \left(\omega_{0} t\right)
$$

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, with damping

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t \\
& x^{\prime \prime}+C x^{\prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \omega t \quad{\text { No conflict with } x_{n}(t) \text { ! }}^{m} \\
& x_{p}=A \cos \omega t+B \sin \omega t \\
& x_{p}^{\prime}=-\omega A \sin \omega t+\omega B \cos \omega t \\
& x_{p}^{\nu}=-\omega^{2} A \cos \omega t-\omega^{2} B \sin \omega t \\
& -\omega^{2} A \cos \omega t-\omega^{2} B \sin \omega t+C(-\omega A \sin \omega t+\omega b \cos \omega t) \\
& +\omega_{0}^{2}(A \cos \omega t+B \sin \omega t)=\frac{F_{0}}{m} \cos \omega t \\
& \underbrace{\left(-\omega^{2} A+c \omega B+\omega_{0}^{2} A\right)}_{\frac{F_{0}}{m}} \cos \omega t+\underbrace{\left(-\omega^{2} B-c \omega A+\omega_{0}^{2} B\right)}_{0} \sin \omega t=\frac{F_{0}}{m} \cos \omega t \\
& A=\frac{F_{0}}{m} \frac{\omega_{0}^{2}-\omega^{2}}{(C \omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)} \\
& B=\frac{F_{0}}{m} \frac{c \omega}{(C \omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)} \\
& x_{p}(t)=\frac{F_{0}}{M} \cdot \frac{1}{\sqrt{\left((\omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}\right.}}\left(\frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{\sqrt{\left.\left((\omega)^{2}+\left(\omega_{0}^{2}\right)^{2}\right)^{2}\right)^{2}}} \cos \omega t+c \omega \sin \operatorname{lo} \sqrt{\left((\omega)^{2}+\left(\omega^{2} \omega^{2}-\omega^{2}\right)^{2}\right.}\right)
\end{aligned}
$$

Forced vibrations, with damping

