Today

- Midterm 1 Jan 31 (one week away!)
- Finish up undetermined coefficients (on the midterm, on WW3)
- Physics applications mass springs (not on midterm, on WW4)
- Undamped, over/under/critically damped oscillations (maybe Thurs)

- Example. Find the general solution to $y^{\prime\prime}+2y^\prime=e^{2t}+t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt$$

(B)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt + E$$

(C)
$$y_p(t) = Ae^{2t} + (Bt^4 + Ct^3 + Dt^2 + Et)$$

(D)
$$y_p(t) = Ae^{2t} + Be^{-2t} + Ct^3 + Dt^2 + Et + F$$

- Example. Find the general solution to $y^{\prime\prime}+2y^\prime=e^{2t}+t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt$$

(B)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt + E$$

$$\uparrow$$
 (C) $y_p(t) = Ae^{2t} + (Bt^4 + Ct^3 + Dt^2 + Et)$

(D)
$$y_p(t) = Ae^{2t} + Be^{-2t} + Ct^3 + Dt^2 + Et + F$$

- Example. Find the general solution to $y^{\prime\prime}+2y^\prime=e^{2t}+t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt$$

(B)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt + E$$

$$(C) \ y_p(t) = Ae^{2t} + (Bt^4 + Ct^3 + Dt^2 + Et) \\ y_p(t) = Ae^{2t} + t(Bt^3 + Ct^2 + Dt + E)$$

$$(D) \ y_p(t) = Ae^{2t} + Be^{-2t} + Ct^3 + Dt^2 + Et + F$$

- Example. Find the general solution to $y^{\prime\prime}+2y^\prime=e^{2t}+t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt$$

(B)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt + E$$

$$(C) \ y_p(t) = Ae^{2t} + (Bt^4 + Ct^3 + Dt^2 + Et) \\ y_p(t) = Ae^{2t} + t(Bt^3 + Ct^2 + Dt + E)$$

$$(D) \ y_p(t) = Ae^{2t} + Be^{-2t} + Ct^3 + Dt^2 + Et + F$$

(E) Don't know / still thinking.

For each wrong answer, for what DE is it the correct form?

- Example. Find the general solution to $y'' 4y = t^3 e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = (At^3 + Bt^2 + Ct + D)e^{2t}$$

(B)
$$y_p(t) = (At^3 + Bt^2 + Ct)e^{2t}$$

(C)
$$y_p(t) = (At^3 + Bt^2 + Ct)e^{2t} + (Dt^3 + Et^2 + Ft)e^{-2t}$$

(D)
$$y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt)e^{2t}$$

- Example. Find the general solution to $y'' 4y = t^3 e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = (At^3 + Bt^2 + Ct + D)e^{2t}$$

(B)
$$y_p(t) = (At^3 + Bt^2 + Ct)e^{2t}$$

(C)
$$y_p(t) = (At^3 + Bt^2 + Ct)e^{2t} + (Dt^3 + Et^2 + Ft)e^{-2t}$$

$$\Rightarrow$$
 (D) $y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt)e^{2t}$

- Example. Find the general solution to $y'' 4y = t^3 e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = (At^3 + Bt^2 + Ct + D)e^{2t}$$

(B)
$$y_p(t) = (At^3 + Bt^2 + Ct)e^{2t}$$

(C)
$$y_p(t) = (At^3 + Bt^2 + Ct)e^{2t} + (Dt^3 + Et^2 + Ft)e^{-2t}$$

$$(D) y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt)e^{2t}$$
$$y_p(t) = t(At^3 + Bt^2 + Ct + D)e^{2t}$$

• Summary - finding a particular solution to L[y] = g(t).

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).
 - If t x (part of the g(t) family), is a solution to the h-problem, use $t^2 \times (g(t))$ family). etc.

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).
 - If t x (part of the g(t) family), is a solution to the h-problem, use $t^2 \times (g(t))$ family). etc.
 - For sums, group terms into families and include terms for each. You can even find a y_p for each family and add them up.

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).
 - If t x (part of the g(t) family), is a solution to the h-problem, use $t^2 \times (g(t))$ family). etc.
 - For sums, group terms into families and include terms for each. You can even find a y_p for each family and add them up.
 - Works for products of functions be sure to include the whole family!

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).
 - If t x (part of the g(t) family), is a solution to the h-problem, use $t^2 \times (g(t))$ family). etc.
 - For sums, group terms into families and include terms for each. You can even find a y_p for each family and add them up.
 - Works for products of functions be sure to include the whole family!
 - Never include a solution to the h-problem as it won't survive L[].
 Just make sure you aren't missing another term somewhere.

• Do lots of these problems and the trends will become clear.

- Do lots of these problems and the trends will become clear.
- Try different y_ps and see what goes wrong this will help you see what must happen when things go right.

- Do lots of these problems and the trends will become clear.
- Try different y_ps and see what goes wrong this will help you see what must happen when things go right.
- Two crucial facts to remember

- Do lots of these problems and the trends will become clear.
- Try different y_ps and see what goes wrong this will help you see what must happen when things go right.
- Two crucial facts to remember
 - If you try a form and you can make LHS=RHS with some choice for the coefficients then you're done.

- Do lots of these problems and the trends will become clear.
- Try different y_ps and see what goes wrong this will help you see what must happen when things go right.
- Two crucial facts to remember
 - If you try a form and you can make LHS=RHS with some choice for the coefficients then you're done.
 - If you can't, your guess is most likely missing a term(s).

$$-\sqrt{k}$$

$$E = \frac{1}{2}K(x-x_0)^2$$

$$E = \frac{1}{2}K(x-x_0)^2$$

$$F = -\frac{dE}{dx} = -K(x-x_0)$$

$$E = \frac{1}{2}K(x-x_0)^2$$

$$E = -\frac{dE}{dx} = -K(x-x_0)$$

$$MQ = F$$
 $MQ = -k(x-x_0)$

$$E = \frac{1}{2}K(x-x_0)^2$$

$$E = -\frac{dE}{dx} = -K(x-x_0)$$

$$M\alpha = F$$

$$M\alpha = -k(x-x_0)$$

$$Mx'' = -k(x-x_0)$$

$$E = \frac{1}{2}K(x-x_0)^2$$

$$E = -\frac{dE}{dx} = -K(x-x_0)$$

$$MQ = F$$

$$MQ = -K(x-x_0)$$

$$MX'' + KX = Kx_0$$

Solid mechanics

e.g. tuning fork, bridges, buildings

Solid mechanics

e.g. tuning fork, bridges, buildings

Solid mechanics

e.g. tuning fork, bridges, buildings

Solid mechanics

e.g. tuning fork, bridges, buildings

Solid mechanics

e.g. tuning fork, bridges, buildings

Solid mechanics

e.g. tuning fork, bridges, buildings

$$x'' = -Kx$$

where K depends on the molecular details of the material and the cross-sectional geometry of the rod.

• So far, no x' term so no exponential decay in the solutions.

- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.

- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

Kelvin-Voigt model

- · So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

Kelvin-Voigt model

- So far, no x' term so no exponential decay in the solutions.
- · Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

Kelvin-Voigt model

$$mq = -k(x-x_0) - \delta V$$

- So far, no x' term so no exponential decay in the solutions.
- · Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

$$mq = -k(x-x_0) - \delta V$$

$$WX'' = -K(X-X^{\circ}) - XX'$$

- So far, no x' term so no exponential decay in the solutions.
- · Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

- So far, no x' term so no exponential decay in the solutions.
- · Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

$$MQ = -k(x-x_0) - \delta V$$

 $Mx'' = -k(x-x_0) - \delta x'$
 $Mx'' + \delta x' + kx = kx_0$
 $Y = x - x_0$

- So far, no x' term so no exponential decay in the solutions.
- · Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

$$mq = -k(x-x_0) - 8v$$

 $mx'' = -k(x-x_0) - 8x'$
 $mx'' + 8x' + kx = kx_0$
 $y = x - x_0$
 $y = x - x_0$

light hitting a molecular bond

