Today

- Midterm 1 - Jan 31 (one week away!)
- Finish up undetermined coefficients (on the midterm, on WW3)
- Physics applications - mass springs (not on midterm, on WW4)
- Undamped, over/under/critically damped oscillations (maybe Thurs)

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t$
(B) $y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t+E$
(C) $y_{p}(t)=A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right)$
(D) $y_{p}(t)=A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F$
(E) Don't know / still thinking.

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t \\
& \text { (B) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t+E \\
& \text { (C) } y_{p}(t)=A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right) \\
& \text { (D) } y_{p}(t)=A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F
\end{aligned}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?

$$
\begin{aligned}
\text { (A) } y_{p}(t) & =A e^{2 t}+B t^{3}+C t^{2}+D t \\
\text { (B) } y_{p}(t) & =A e^{2 t}+B t^{3}+C t^{2}+D t+E \\
\text { (C) } y_{p}(t) & =A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right) \\
y_{p}(t) & =A e^{2 t}+t\left(B t^{3}+C t^{2}+D t+E\right) \\
\text { (D) } y_{p}(t) & =A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F
\end{aligned}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?

$$
\begin{aligned}
\text { (A) } y_{p}(t) & =A e^{2 t}+B t^{3}+C t^{2}+D t \\
\text { (B) } y_{p}(t) & =A e^{2 t}+B t^{3}+C t^{2}+D t+E \\
\text { (C) } y_{p}(t) & =A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right) \\
y_{p}(t) & =A e^{2 t}+t\left(B t^{3}+C t^{2}+D t+E\right) \\
\text { (D) } y_{p}(t) & =A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F
\end{aligned}
$$

(E) Don't know / still thinking.

For each wrong answer, for what DE is it the correct form?

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}-4 y=t^{3} e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } \begin{aligned}
& y_{p}(t)=\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
& \text { (B) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t\right) e^{2 t}
\end{aligned} \\
& \text { (C) } \begin{aligned}
y_{p}(t) & =\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
& \quad+\left(D t^{3}+E t^{2}+F t\right) e^{-2 t}
\end{aligned} \\
& \text { (D) } y_{p}(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t\right) e^{2 t}
\end{aligned}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}-4 y=t^{3} e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
& \text { (B) }
\end{aligned}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}-4 y=t^{3} e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
& \text { (B) } \begin{aligned}
y_{p}(t) & =\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
\text { (C) } y_{p}(t) & =\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
& +\left(D t^{3}+E t^{2}+F t\right) e^{-2 t} \\
\text { (D) } y_{p}(t) & =\left(A t^{4}+B t^{3}+C t^{2}+D t\right) e^{2 t} \\
y_{p}(t) & =t\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t}
\end{aligned}
\end{aligned}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients

- Summary - finding a particular solution to $L[y]=g(t)$.

Method of undetermined coefficients

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)

Method of undetermined coefficients

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h -)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).

Method of undetermined coefficients

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h -)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t x$ (part of the $g(t)$ family), is a solution to the h-problem, use $t^{2} x$ ($g(t)$ family). etc.

Method of undetermined coefficients

- Summary - finding a particular solution to $\mathrm{L}[\mathrm{y}]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h -)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t x$ (part of the $g(t)$ family), is a solution to the h-problem, use $t^{2} x$ ($g(t)$ family). etc.
- For sums, group terms into families and include terms for each. You can even find a y_{p} for each family and add them up.

Method of undetermined coefficients

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h -)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t \times$ (part of the $g(t)$ family), is a solution to the h-problem, use $t^{2} x$ ($g(t)$ family). etc.
- For sums, group terms into families and include terms for each. You can even find a y_{p} for each family and add them up.
- Works for products of functions - be sure to include the whole family!

Method of undetermined coefficients

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h -)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t \times$ (part of the $g(t)$ family), is a solution to the h-problem, use $t^{2} x$ ($g(t)$ family). etc.
- For sums, group terms into families and include terms for each. You can even find a y_{p} for each family and add them up.
- Works for products of functions - be sure to include the whole family!
- Never include a solution to the h-problem as it won't survive L[]. Just make sure you aren't missing another term somewhere.

Method of undetermined coefficients

Method of undetermined coefficients

- Do lots of these problems and the trends will become clear.

Method of undetermined coefficients

- Do lots of these problems and the trends will become clear.
- Try different $y_{p s}$ and see what goes wrong - this will help you see what must happen when things go right.

Method of undetermined coefficients

- Do lots of these problems and the trends will become clear.
- Try different $y_{p} s$ and see what goes wrong - this will help you see what must happen when things go right.
- Two crucial facts to remember

Method of undetermined coefficients

- Do lots of these problems and the trends will become clear.
- Try different $y_{p} s$ and see what goes wrong - this will help you see what must happen when things go right.
- Two crucial facts to remember
- If you try a form and you can make LHS=RHS with some choice for the coefficients then you're done.

Method of undetermined coefficients

- Do lots of these problems and the trends will become clear.
- Try different $y_{p} s$ and see what goes wrong - this will help you see what must happen when things go right.
- Two crucial facts to remember
- If you try a form and you can make LHS=RHS with some choice for the coefficients then you're done.
- If you can't, your guess is most likely missing a term(s).

Applications - vibrations

Mass-spring systems

Applications - vibrations

Mass-spring systems

$$
m a=F
$$

Applications - vibrations

Mass-spring systems

$$
E=\frac{1}{2} k\left(x-x_{0}\right)^{2}
$$

$$
m a=F
$$

Applications - vibrations

Mass-spring systems

$$
\begin{aligned}
& E=\frac{1}{2} k\left(x-x_{0}\right)^{2} \\
& F=-\frac{d E}{d x}=-k\left(x-x_{0}\right)
\end{aligned}
$$

$$
m a=F
$$

Applications - vibrations

Mass-spring systems

$$
\begin{aligned}
& E=\frac{1}{2} k\left(x-x_{0}\right)^{2} \\
& F=-\frac{d E}{d x}=-k\left(x-x_{0}\right)
\end{aligned}
$$

$$
m a=F
$$

$m a=-k\left(x-x_{0}\right)$

Applications - vibrations

Mass-spring systems

$$
\begin{aligned}
& E=\frac{1}{2} k\left(x-x_{0}\right)^{2} \\
& F=-\frac{d E}{d x}=-k\left(x-x_{0}\right)
\end{aligned}
$$

$$
m a=F
$$

$$
m a=-k\left(x-x_{0}\right)
$$

$$
m x^{\prime \prime}=-k\left(x-x_{0}\right)
$$

Applications - vibrations

Mass-spring systems

$$
\begin{aligned}
& E=\frac{1}{2} k\left(x-x_{0}\right)^{2} \\
& F=-\frac{d E}{d x}=-k\left(x-x_{0}\right)
\end{aligned}
$$

$$
m a=F
$$

$$
m a=-k\left(x-x_{0}\right)
$$

$$
m x^{\prime \prime}=-k\left(x-x_{0}\right)
$$

$$
m x^{\prime \prime}+k x=k x_{0}
$$

Applications - vibrations

Applications - vibrations

Molecular bonds

Applications - vibrations

Molecular bonds

Applications - vibrations

Molecular bonds

Applications - vibrations

Molecular bonds

Applications - vibrations

Solid mechanics

e.g. tuning fork, bridges, buildings

Applications - vibrations

Solid mechanics

e.g. tuning fork, bridges, buildings

Applications - vibrations

Solid mechanics

e.g. tuning fork, bridges, buildings

(2xy

Applications - vibrations

Solid mechanics

e.g. tuning fork, bridges, buildings

Applications - vibrations

Solid mechanics

e.g. tuning fork, bridges, buildings

Applications - vibrations

Solid mechanics

e.g. tuning fork, bridges, buildings

$$
x^{\prime \prime}=-K x
$$

where K depends on the molecular details of the material and the cross-sectional geometry of the rod.

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

Kelvin-Voigt model

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
m a=-k\left(x-x_{0}\right)-\gamma v
$$

Kelvin-Voigt model

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
\begin{aligned}
& m a=-k\left(x-x_{0}\right)-\gamma v \\
& m x^{\prime \prime}=-k\left(x-x_{0}\right)-\gamma x^{\prime}
\end{aligned}
$$

Kelvin-Voigt model

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
\begin{aligned}
& m a=-k\left(x-x_{0}\right)-\gamma v \\
& m x^{\prime \prime}=-k\left(x-x_{0}\right)-\gamma x^{\prime} \\
& m x^{\prime \prime}+\gamma x^{\prime}+k x=k x_{0}
\end{aligned}
$$

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
\begin{gathered}
m a=-k\left(x-x_{0}\right)-\gamma v \\
m x^{\prime \prime}=-k\left(x-x_{0}\right)-\gamma x^{\prime} \\
m x^{\prime \prime}+\gamma x^{\prime}+k x=k x_{0} \\
y=x-x_{0}
\end{gathered}
$$

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
\begin{gathered}
m a=-k\left(x-x_{0}\right)-\gamma v \\
m x^{\prime \prime}=-k\left(x-x_{0}\right)-\gamma x^{\prime} \\
m x^{\prime \prime}+\gamma x^{\prime}+k x=k x_{0} \\
y=x-x_{0} \\
m y^{\prime \prime}+\gamma y^{\prime}+k y=0
\end{gathered}
$$

Applications - forced vibrations

Applications - forced vibrations

Applications - forced vibrations

- light hitting a molecular bond

Applications - forced vibrations

- light hitting a molecular bond

