Today

e Mass-springs as models for everything.
e Forced vibrations
e Newton’s 2nd Law with external forcing.
¢ Forced mass-spring system without damping away from resonance.
¢ Forced mass-spring system without damping at resonance.
¢ Forced mass-spring system with damping.

e Midterm (Feb 2, in class) - Everything up to and including Tuesday Jan
26 (Method of Undetermined Coefficients).



Applications - vibrations
Mass-spring systems
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Applications - vibrations

Molecular bonds




Applications - vibrations

Solid mechanics

e.g. tuning fork, bridges, buildings
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Applications - vibrations

e So far, no x’ term so no exponential decay in the solutions.

e Dashpot - mechanical element that adds friction.

- sometimes an abstraction that accounts for energy loss.
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Applications - forced vibrations
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e |ight hitting a molecular bond
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® pressure waves (sound)
hitting a turning fork.
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e carthquake
hitting a building




Applications - vibrations, undamped

e Undamped mass spring

/!
mu

kx =0

(A) az(t) — Cl€_w0t + 026w0t

B) x(t) = Cie”“°" + Cote™ 0!

w (C) z(t) = Cq cos(wpt) + Cs sin(wot)

(D) Don’t know.



Applications - vibrations, undamped

e Undamped mass spring

mz” + kxr =0

mr? + k=0

[ k.
= I\ —1
m

x(t) = Cq cos(wot) + Cs sin(wot)
k

Wy = A/ — e Natural frequency
m

¢ increases with stiffness
e decreases with mass



Applications - vibrations, undamped

Trig identity reminders
sin(A 4+ B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)

2 cos(3t + 7T/3)

(E) Don’t know / still thinking.



Applications - vibrations, undamped

e Converting from sum-of-sin-cos to a single cos expression:

e Example:
4 cos(2t) + 3sin(2t)
—5 (% cos(2t) + gsin(Qt)> 3 2
= 5(cos(¢) cos(2t) + sin(¢) sin(2t))
4
= 5cos(2t — ¢) ¢ = 0.9273

4% + 3% = 52

cos(A — B) ‘COS 6SH1

(cos(A), sin(A)) must lie on the unit circle. i.e. cos?(A)+sin?(A .



Applications - vibrations, undamped

e Converting from sum-of-sin-cos to a single cos expression:

y(t) = C cos(wot) + Cs sin(wpt)

e Step 1 - Factor out A = \/C'l2 Cs .

&
e Step 2 - Find the angle @ for which cos —
? (¢) T
and sin(¢) = C2
VCE+C3

e Step 3 - Rewrite the solution as y(t) = A cos(wot — ¢).
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Applications - vibrations, damped

e Damped mass-spring

mx” + vz’ + kx =0 m, v,k >0
= mri4+yr+k=0

y \/72 —4km Y dkm
1.2 — T = — | —1=x 1 5
’ 2m 2m 2m 8l

(A)
B)

Always complex roots. /' '\
(B) Always real roots. negative or ~ smaller than 1
(C) Always one +, one - root. complex or complex

¢ (D) Never exp growth.
(

E) Don’t know / still thinking.

There are three cases...
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Applications - vibrations, damped

e Damped oscillations y 4km
" 2 — — —1 £ 1 5
’ 2m Y
4k
(i) ;n <1 — I, r2 <0, exponential decay only
! (over damped -7 large)
. 4km
(ii) — =1 —> ri=rz, exp and t*exp decay
i (critically damped)
! .
(iii) k;n>1 = r=ax 3t
k v
o = < 0 = decaying oscillations
For graphs, see: 2m (under damped - 7Y small)
t .
https://www.desmos.com/ m(t) = e (Cl COS(ﬁt) + C Sm(ﬁt))

— 1 <«— called pseudo-frequency
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Forced vibrations

e Newton’s 2nd Law:

ma = —kx — yv +F(t)

SN

spring forcé  4ag'force  applied/external force
mx' + vyx' + kx = F(t)

e Forced vibrations - nonhomogeneous linear equation with constant
coefficients.

e Building during earthquake, tuning fork near instrument, car over
washboard road, polar bond under EM stimulus (classical, not
quantum).



Forced vibrations, no damping

e Without damping (7 = 0 )-/ forcing frequency

mx' + kx = Fy cos(wt)

e For what value(s) of w does this equation have an unbounded
solution?

 (A) w = sqrt(k/m)
(B) w = m/Fg
(C) w = (k/m)?

(D) w=2m



Forced vibrations, no damping, away from wo

e Without damping (7 = 0 )-/ forcing frequency

max'” + kx = Fy cos(wt)

mx”" + kx = 0
i | K
zp(t) = C1 cos(wot) + Casin(wot) wo = —
eCase 1: W # wy \

natural frequency

z,(t) = Acos(wt) + B sin(wt)
A =7 B ="



Forced vibrations, no damping, away from wo

e Without damping (7 = 0 )-/ forcing frequency

mx' + kx = Fy cos(wt)

mz” + kx =0
| k
xh(t) — Cl COS(th) -+ 02 Siﬂ(th) Wy = E
eCase 1: W # wy \

natural frequency

z,(t) = Acos(wt) + B sin(wt)

x,(t) = —w? A cos(wt) — w? B sin(wt)

mx;, + kr, = (k — w?m)A cos(wt) + (k — w?*m) B sin(wt)
Hy
(h(B2a)

= Fpcos(wt) = A = ,B=0



Forced vibrations, no damping, away from wo

e Without damping (v = 0), w # wy .

. When wo=w --> beats
e Simp Cy = 0.
) 1 ‘ " A A ] l
N A | | ,‘ X | | l A |
1 /| » f | | ' IHINIE| | ([
' \‘ ' | ’ ' f\ ,(‘\ li |\ lr ‘l | ll l l. -l ‘| !' 1' ‘ in‘ Al ' ' ' r ‘ l ‘ j I ' lt | l . “ " \ /f‘. ,l | l\ l‘ ‘ .i
4 ‘ "" r,: 1‘| |" | [ ‘.'Q. : . | } ' | ] v \‘.\!,' ‘ ’ ARCERER . 5 ~ k‘ " ‘| | b
" ‘ ll » | !\" l‘ | ‘ ‘ l. l ll I I , \"' s ‘l ji | ” \ |' l 1 ‘ ‘l)l‘ .l ' .\l l ' l ‘
! V \.: | . t, \J y Y |
2F() . (uj() — W)t i (CU() + W)t
r(t) = 55~ Sin sin
m(w§ — w?) 2 2
N—— _

—

_ https://www.desmos.com/
amplitude envelope

calculator/cfifpxefiw



https://www.desmos.com/calculator/cfjfpxef1w
https://www.desmos.com/calculator/cfjfpxef1w
https://www.desmos.com/calculator/cfjfpxef1w
https://www.desmos.com/calculator/cfjfpxef1w

Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy-

mx” + d@éﬂgeqs(éa(@w()t Wy = \/g
2 (t) = H(A cos(isoth-+BSmGoT)

r! (t) = Acos(wot) + B sin(wot)

p
RHS solves the homogil”ﬁus gfgfﬂ(wot) + wo B COS(WOt))
r? + wi =0

x,(t) = —woAsin(wot) + wo B cos(wot)
+(— —woA Smtdwot ) + wo B cos(wot))

+i(—wg ° A cos{wgt—we B (wol) )

F
Fo Fo N — 20 4 4
B = — Zp(1) —=1sin(wo?)
2wom 2V km 2V km




Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

¢ | ong term behaviour - X, grows unbounded, swamping out X.

t SiIl(UJ()t) | : /]



Forced vibrations, no damping, summary

e Plot of the amplitude of the particular solution as a function of w.

A(w)

e Calculated:
Fo
A= 5

m(w§ — w?)

e Plotted with:

F
-9 — 1, Wy — 1
T
1
Aw) = 15203

e Recall that for w = wq, the
amplitude grows without

bound.



Forced vibrations, with damping
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Forced vibrations, with damping

Amplitude of solution f
3




