Today

- Mass-springs as models for everything.
- Forced vibrations
- Newton's 2nd Law with external forcing.
- Forced mass-spring system without damping away from resonance.
- Forced mass-spring system without damping at resonance.
- Forced mass-spring system with damping.
- Midterm (Feb 2, in class) - Everything up to and including Tuesday Jan 26 (Method of Undetermined Coefficients).

Applications - vibrations

Mass-spring systems

$$
\begin{aligned}
& E=\frac{1}{2} k\left(x-x_{0}\right)^{2} \\
& F=-\frac{d E}{d x}=-k\left(x-x_{0}\right)
\end{aligned}
$$

$$
m a=F
$$

$$
m a=-k\left(x-x_{0}\right)
$$

$$
m x^{\prime \prime}=-k\left(x-x_{0}\right)
$$

$$
m x^{\prime \prime}+k x=k x_{0}
$$

Applications - vibrations

Molecular bonds

Applications - vibrations

Solid mechanics

e.g. tuning fork, bridges, buildings

Applications - vibrations

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
\begin{gathered}
m a=-k\left(x-x_{0}\right)-\gamma v \\
m x^{\prime \prime}=-k\left(x-x_{0}\right)-\gamma x^{\prime} \\
m x^{\prime \prime}+\gamma x^{\prime}+k x=k x_{0} \\
y=x-x_{0} \\
m y^{\prime \prime}+\gamma y^{\prime}+k y=0
\end{gathered}
$$

Applications - forced vibrations

- light hitting a molecular bond

- pressure waves (sound) hitting a turning fork.

Applications - vibrations, undamped

- Undamped mass spring

$$
m x^{\prime \prime}+k x=0
$$

(A) $x(t)=C_{1} e^{-\omega_{0} t}+C_{2} e^{\omega_{0} t}$
(B) $x(t)=C_{1} e^{-\omega_{0} t}+C_{2} t e^{-\omega_{0} t}$
(C) $x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)$
(D) Don't know.

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

Applications - vibrations, undamped

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0 \\
r= \pm \sqrt{\frac{k}{m}} i \\
x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
\end{gathered}
$$

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

- Natural frequency
- increases with stiffness
- decreases with mass

Applications - vibrations, undamped

Trig identity reminders

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

$2 \cos (3 t+\pi / 3)=$
(A) $2 \sin (\pi / 3) \cos (3 t)-2 \sin (\pi / 3) \cos (3 t)$
(B) $2 \sin (\pi / 3) \cos (3 t)+2 \sin (\pi / 3) \cos (3 t)$
© (C) $2 \cos (\pi / 3) \cos (3 t)-2 \sin (\pi / 3) \sin (3 t)$
(D) $2 \cos (\pi / 3) \cos (3 t)+2 \sin (\pi / 3)^{\cos } \sin (3 t)-\sqrt{3} \sin (3 t)$
(E) Don't know / still thinking.

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right) \\
& \quad=5(\cos (\phi) \cos (2 t)+\sin (\phi) \sin (2 t)) \\
& \quad=5 \cos (2 t-\phi)
\end{aligned}
$$

$$
\frac{4}{4}
$$

$$
\phi=0.9273
$$

$$
\cos (A-B)=\begin{gathered}
\not 4^{2}+3^{2}=5^{2} \not 又 \\
\cos (A \cos (B)+\sin (A) \sin (B)
\end{gathered}
$$

$(\cos (A), \sin (A))$ must lie on the unit circle. i.e. $\cos ^{2}(A)+\sin ^{2}(A)=1$.

Applications - vibrations, undamped

- Converting from sum-of-sin-cos to a single cos expression:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

- Step 1 - Factor out $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$.
- Step 2 - Find the angle ϕ for which $\cos (\phi)=\frac{C_{1}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}$

$$
\text { and } \sin (\phi)=\frac{C_{2}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}
$$

- Step 3 - Rewrite the solution as $y(t)=A \cos \left(\omega_{0} t-\phi\right)$.

Applications - vibrations, damped

- Damped mass-spring

$$
\begin{array}{cc}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 & m, \gamma, k>0 \\
\Rightarrow \quad m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right) \\
\text { (A) Always complex roots. } & \frac{1}{1} \\
\text { (B) Always real roots. } & \text { negative or smaller tha } \\
\text { (C) Always one +, one - root. } & \text { complex or comple }
\end{array}
$$

There are three cases...
(E) Don't know / still thinking.

Applications - vibrations, damped

- Damped oscillations

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
(ii) $\frac{4 k m}{\gamma^{2}}=1$
(iii) $\frac{4 k m}{\gamma^{2}}>1 \Rightarrow r=\alpha \pm \beta i$

For graphs, see: https://www.desmos.com/ calculator/8v1nueimow

$$
\begin{aligned}
& \alpha=-\frac{\gamma}{2 m}<0 \Rightarrow \begin{array}{c}
\text { decaying oscillations } \\
\text { (under damped }-\gamma \text { small) }
\end{array} \\
& x(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right) \\
& \beta=\sqrt{\frac{4 k m}{\gamma^{2}}-1} \longleftarrow \text { called pseudo-frequency }
\end{aligned}
$$

Forced vibrations

- Newton's 2nd Law:

- Forced vibrations - nonhomogeneous linear equation with constant coefficients.
- Building during earthquake, tuning fork near instrument, car over washboard road, polar bond under EM stimulus (classical, not quantum).

Forced vibrations, no damping

- Without damping $(\gamma=0)$. forcing frequency

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

- For what value(s) of w does this equation have an unbounded solution?
$\hat{s}(A) \mathrm{w}=\operatorname{sqrt}(\mathrm{k} / \mathrm{m})$
(B) $w=m / F_{0}$
(C) $w=(k / m)^{2}$
(D) $w=2 \pi$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt[p]{\frac{k}{m}}
$$

- Case 1: $\omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& A=?, B=?
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& \begin{array}{c}
x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
m x_{p}^{\prime \prime}+k x_{p}= \\
\quad=F_{0} \cos (\omega t) \Rightarrow A=\frac{\left.\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t)}{\left.k\left(\omega_{0}^{2} \omega^{2} n\right)^{2}\right)}, B=0
\end{array}
\end{aligned}
$$

Forced vibrations, no damping, away from wo

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.

amplitude envelope
https://www.desmos.com/ calculator/cffifpxef1w

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.

$$
\begin{aligned}
& m x^{\prime \prime}+\operatorname{lo}^{2} x=F_{0}^{F_{0}} \cos \left(\sin _{(\theta)} t_{0} t\right) \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)
\end{aligned}
$$

RHS solves the homogenous equation $\left.\underset{T_{2}}{\underset{2}{\omega}} \underset{\sim}{2}\left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)$

$$
x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right)^{r^{2}}+\omega_{0}^{2}+\omega_{0}^{2}=0
$$

$$
+\left(-\omega_{0} \stackrel{r}{A}=\sin \left(\omega_{0} i \omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
$$

$$
+t\left(-\omega_{0}^{2} A \cos \left(\omega_{0} t\right)-\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)
$$

$$
\begin{aligned}
& A=0 \\
& B=\frac{F_{0}}{2 \omega_{0} m}=\frac{F_{0}}{2 \sqrt{k m}}
\end{aligned}
$$

$$
x_{p}(t)=\frac{F_{0}}{2 \sqrt{k m}} t \sin \left(\omega_{0} t\right)
$$

Forced vibrations, no damping, w=wo

- Without damping $(\gamma=0), \omega=\omega_{0}$.
- Long term behaviour $-\mathrm{x}_{\mathrm{p}}$ grows unbounded, swamping out x_{h}.

$$
x_{p}(t)=\frac{F_{0}}{2 \sqrt{k m}} t \sin \left(\omega_{0} t\right)
$$

Forced vibrations, no damping, summary

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations, with damping

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t \\
& x^{\prime \prime}+C x^{\prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \omega t \quad{\text { No conflict with } x_{n}(t) \text { ! }}^{m} \\
& x_{p}=A \cos \omega t+B \sin \omega t \\
& x_{p}^{\prime}=-\omega A \sin \omega t+\omega B \cos \omega t \\
& x_{p}^{\nu}=-\omega^{2} A \cos \omega t-\omega^{2} B \sin \omega t \\
& -\omega^{2} A \cos \omega t-\omega^{2} B \sin \omega t+C(-\omega A \sin \omega t+\omega b \cos \omega t) \\
& +\omega_{0}^{2}(A \cos \omega t+B \sin \omega t)=\frac{F_{0}}{m} \cos \omega t \\
& \underbrace{\left(-\omega^{2} A+c \omega B+\omega_{0}^{2} A\right)}_{\frac{F_{0}}{m}} \cos \omega t+\underbrace{\left(-\omega^{2} B-c \omega A+\omega_{0}^{2} B\right)}_{0} \sin \omega t=\frac{F_{0}}{m} \cos \omega t \\
& A=\frac{F_{0}}{m} \frac{\omega_{0}^{2}-\omega^{2}}{(C \omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)} \\
& B=\frac{F_{0}}{m} \frac{c \omega}{(C \omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)} \\
& x_{p}(t)=\frac{F_{0}}{M} \cdot \frac{1}{\sqrt{\left((\omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}\right.}}\left(\frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{\sqrt{\left.\left((\omega)^{2}+\left(\omega_{0}^{2}\right)^{2}\right)^{2}\right)^{2}}} \cos \omega t+c \omega \sin \operatorname{lo} \sqrt{\left((\omega)^{2}+\left(\omega^{2} \omega^{2}-\omega^{2}\right)^{2}\right.}\right)
\end{aligned}
$$

Forced vibrations, with damping

