Today

e Mass-springs as models for everything.
e Forced vibrations
e Newton’s 2nd Law with external forcing.
¢ Forced mass-spring system without damping away from resonance.
¢ Forced mass-spring system without damping at resonance.
¢ Forced mass-spring system with damping.

e Midterm (Feb 2, in class) - Everything up to and including Tuesday Jan
26 (Method of Undetermined Coefficients).
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e.g. tuning fork, bridges, buildings

where K depends on the molecular details of
the material and the cross-sectional geometry
of the rod.
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e So far, no x’ term so no exponential decay in the solutions.

e Dashpot - mechanical element that adds friction.
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Applications - vibrations

e So far, no x’ term so no exponential decay in the solutions.

e Dashpot - mechanical element that adds friction.

- sometimes an abstraction that accounts for energy loss.
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Applications - forced vibrations

<\

e |ight hitting a molecular bond
- i,

{

® pressure waves (sound)
hitting a turning fork.

— |

e carthquake
hitting a building
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Applications - vibrations, undamped

e Undamped mass spring

mz” + kxr =0

mr? + k=0

[ k.
= I\ —1
m

x(t) = Cq cos(wot) + Cs sin(wot)
k

Wy = A/ — e Natural frequency
m

¢ increases with stiffness
e decreases with mass
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sin(A 4+ B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)
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Trig identity reminders
sin(A 4+ B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)

2cos(3t +7/3) =
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e Example:
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Applications - vibrations, undamped

e Converting from sum-of-sin-cos to a single cos expression:

e Example:

4 cos(2t) + 3sin(2t)
3

.y (g cos(2t) + = Sin(2t)>

= 5(cos(¢) cos(2t) + sin(¢) sin(2t))

cos(A — B) = cos(A) cos(B) + sin(A) sin(B)
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e Example:
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Applications - vibrations, undamped

e Converting from sum-of-sin-cos to a single cos expression:

e Example:
4 cos(2t) + 3sin(2t)
—5 <§ cos(2t) + gsin(Qt)> 3 2
= 5(cos(¢) cos(2t) + sin(¢) sin(2t))
4
= 5cos(2t — ¢) ¢ = 0.9273

cos(A — B) = cos(A) cos(B) + sin(A) sin(B)

10
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Applications - vibrations, undamped

e Converting from sum-of-sin-cos to a single cos expression:

y(t) = C cos(wot) + Cs sin(wpt)
e Step 1 - Factor out A = \/C'l2 Cs .

C1
e Step 2 - Find the angle gb for which COS(¢) =
2 2
- VCT +C3

NEEY

and sin(¢)
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Applications - vibrations, undamped

e Converting from sum-of-sin-cos to a single cos expression:

y(t) = C cos(wot) + Cs sin(wpt)

e Step 1 - Factor out A = \/C'l2 Cs .

&
e Step 2 - Find the angle @ for which cos —
? (¢) T
and sin(¢) = C2
VCE+C3

e Step 3 - Rewrite the solution as y(t) = A cos(wot — ¢).

11
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Applications - vibrations, damped

e Damped mass-spring

ry2 =

mx”" + vz’ + kx =0
= mri4+yr+k=0

N \/72 — 4km

2m

2m

T
2m

m,v,k >0

(1 _
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e Damped mass-spring

mx” + vz’ + kx =0 m, v,k >0

= mri4+yr+k=0

2 4k
ry2 = B :\/’7 m l(l\/l

2m 2m 2m
(A) Always complex roots. /'
B) Always real roots. negative or
C) Always one +, one - root. complex

Never exp growth.
E) Don’t know / still thinking.
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Applications - vibrations, damped

e Damped mass-spring

mx” + vz’ + kx =0 m, v,k >0
= mri4+yr+k=0

y \/72 —4km Y dkm
1.2 — T = — | —1=x 1 5
’ 2m 2m 2m 8l

(A)
B)

Always complex roots. /' '\
(B) Always real roots. negative or ~ smaller than 1
(C) Always one +, one - root. complex or complex

¢ (D) Never exp growth.
(

E) Don’t know / still thinking.

There are three cases...
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Applications - vibrations, damped

e Damped oscillations
ry 2 =
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e Damped oscillations
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e Damped oscillations o ( \/
rMo=——||—1= 1
2m

4km

<1

—> 1, r2 <0, exponential decay only
(over damped -7 large)

—> rn=r, exp and t"exp decay
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Applications - vibrations, damped

» Damped oscillations v ( \/ 4km)
" 2 — — — 1 - 1
’ 2 2
m vy

4
(i) k;n <1 — I, r2 <0, exponential decay only

! (over damped -7 large)
. 4k
(ii) o 1 —> rn=r, exp and t"exp decay

2

v (critically damped)
(i 4k;”>1 = r=oa+ i

Y

o = 2l < 0 = decaying oscillations

2m (under damped - 7Y small)
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Applications - vibrations, damped

e Damped oscillations
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(i)

4km
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- 2m

(

r1, r2 < 0, exponential decay only
(over damped -7 large)

ri=r2, exp and t*exp decay
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2m

z(t)

< 0 = decaying oscillations

(under damped - 7Y small)
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e Damped oscillations y 4km
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Applications - vibrations, damped

» Damped oscillations v ( \/ 4km)
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m vy
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(i) 57— <1 — I, r2 <0, exponential decay only
v (over damped -7 large)
. 4k
(ii) ;n =1 —> rn=r, exp and t"exp decay
v (critically damped)
(i 4k;”>1 = r=qa+ 3
Y
o = 2l < 0 = decaying oscillations
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Applications - vibrations, damped

e Damped oscillations y 4km
" 2 — — —1 £ 1 5
’ 2m Y
4k
(i) ;n <1 — I, r2 <0, exponential decay only
! (over damped -7 large)
. 4km
(ii) — =1 —> ri=rz, exp and t*exp decay
i (critically damped)
! .
(iii) k;n>1 = r=ax 3t
k v
o = < 0 = decaying oscillations
For graphs, see: 2m (under damped - 7Y small)
t .
https://www.desmos.com/ m(t) = e (Cl COS(ﬁt) + C Sm(ﬁt))

— 1 <«— called pseudo-frequency
13
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e Newton’s 2nd Law:
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e Forced vibrations - nonhomogeneous linear equation with constant
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Forced vibrations

e Newton’s 2nd Law:

ma = —kx — yv +F(t)

SN

spring forcé  4ag'force  applied/external force
mx' + vyx' + kx = F(t)

e Forced vibrations - nonhomogeneous linear equation with constant
coefficients.

e Building during earthquake, tuning fork near instrument, car over
washboard road, polar bond under EM stimulus (classical, not
quantum).



Forced vibrations, no damping

e Without damping (7 = 0 )-/ forcing frequency

mx' + kx = Fy cos(wt)

e For what value(s) of w does this equation have an unbounded
solution?

(A) w = sqrt(k/m)
(B) w = m/Fo
(C) w = (K/m)?

(D) w=2m
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| k
Q?h(t) — Cl COS(th) -+ 02 Siﬂ((,dot) Wy = E
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natural frequency
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A =7 B ="
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Forced vibrations, no damping, away from wo

e Without damping (7 = 0 )-/ forcing frequency

max'” + kx = Fy cos(wt)

mz” + kx =0
| k
Q?h(t) — Cl COS(th) -+ 02 Siﬂ((,dot) Wy = E
eCase 1: W # wy \

natural frequency

z,(t) = Acos(wt) + B sin(wt)
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ng + kx,p, =



Forced vibrations, no damping, away from wo

e Without damping (7 = 0 )-/ forcing frequency

max'” + kx = Fy cos(wt)

mz” + kx =0
| k
xh(t) — Cl COS(th) -+ 02 Siﬂ(th) Wy = E
eCase 1: W # wy \

natural frequency

z,(t) = Acos(wt) + B sin(wt)
x,(t) = —w? A cos(wt) — w? B sin(wt)
mx;, + kr, = (k — w?m)A cos(wt) + (k — w?*m) B sin(wt)



Forced vibrations, no damping, away from wo

e Without damping (v = 0 )_/ forcing frequency
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Forced vibrations, no damping, away from wo

e Without damping (v = 0), w # wy .
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m(wg — w?)’

e Simple case: z(0) =2'(0)=0 = (C; = Cy = 0.
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m(wg — w?)

x(t) =

(cos(wt) — cos(wot))
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e Without damping (v = 0), w # wy .
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Forced vibrations, no damping, away from wo

e Without damping (v = 0), w # wy .
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Forced vibrations, no damping, away from wo

e Without damping (v = 0), w # wy .

Fo
m(wg — w?)’

e Simple case: z(0) =2'(0)=0 = (C; = Cy = 0.

Fo
= g =)

on(s) —cn() =23 (452 n (452)

o(t) = s (L0 g (L L)
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amplitude envelope

(cos(wt) — cos(wot))




Forced vibrations, no damping, away from wo

e Without damping (v = 0), w # wy .

. When wo=w --> beats
e Simp
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Forced vibrations, no damping, away from wo

e Without damping (v = 0), w # wy .

. When wo=w --> beats
e Simp Cy = 0.
| { t\ t \ | t | | { |
fr\ | |‘\ f,‘l | | | | ‘ 1] [ “ \ f| i|l ll
' ‘ i ! o' 'l f \ '(‘\ l‘ \ ! | ‘ | "' ! ‘, | \ ‘ IN\ N l \ ‘ ’ ‘ ‘ ‘ , ! ,’ .I ,' ‘ | \ /l.‘. 'l I ’ c
| Ll ] ) | "."_i; "‘ I 1 1171 _1 1 1] \ /o ',\’,' | . ‘ ' ;.’ y t | ‘, | |
‘lw“, J / |/} f‘;"l'\y’ ! u‘.\;Ht | ¥ | ~"’l'
‘sl ’ l 'J \; | ll ' ‘ li | " |\ : v |
- ' X \ ’ :
2y (wo —w)t\ . [ (wo+ w)t
x(t) = 5 >~ sin sin
m(w§ — w?) 2
N— 7

https://www.desmos.com/
calculator/cfifpxefiw

amplitude envelope



https://www.desmos.com/calculator/cfjfpxef1w
https://www.desmos.com/calculator/cfjfpxef1w
https://www.desmos.com/calculator/cfjfpxef1w
https://www.desmos.com/calculator/cfjfpxef1w

Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -



Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

k
max” + kx = Fy cos(wot) wo = (| —
m



Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

F k
2" + wir = = cos(wpt) wo =1/ —
m m



Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

F k
2" + wir = = cos(wpt) wo =1/ —
m m

RHS solves the homogenous equation:

7°2+w(2):O

T = ::woi



Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

F k
2" + wir = = cos(wpt) wo =1/ —
m m

z,(t) = t(A cos(wpt) + B sin(wpt))

RHS solves the homogenous equation:

7°2+w(2):O

T = ::woi



Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

F k
2" + wir = = cos(wpt) wo =1/ —
m m

z,(t) = t(A cos(wpt) + B sin(wpt))
x,(t) = Acos(wot) + B sin(wot)

+t(—wo A sin(wpt) + woB cos(wpt))



Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

F k
2" + wir = = cos(wpt) wo =1/ —
m m

z,(t) = t(A cos(wpt) + B sin(wpt))

x,(t) = Acos(wot) + B sin(wot)

+t(—wo A sin(wpt) + woB cos(wpt))

x, (t) = —woAsin(wot) + woB cos(wot)



Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

F k
2" + wir = = cos(wpt) wo =1/ —
m m

z,(t) = t(A cos(wpt) + B sin(wpt))

x,(t) = Acos(wot) + B sin(wot)
+t(—wo A sin(wpt) + woB cos(wpt))
1 (t) = —wpAsin(wot) + woB cos(wpt)

p
+(—woA sin(wot) + woB cos(wpt))



Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

F k
2" + wir = = cos(wpt) wo =1/ —
m m

z,(t) = t(A cos(wpt) + B sin(wpt))

x,(t) = Acos(wot) + B sin(wot)
+t(—wo A sin(wpt) + woB cos(wpt))
x, (t) = —woAsin(wot) + woB cos(wot)
+(—woA sin(wot) + woB cos(wpt))

+t(—wi A cos(wot) — wi B sin(wot))



Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

F | k
2" + wir = = cos(wpt) wo =/ —
m m

o

(1) = t(A cosluwety+BImwol) )

——

x,(t) = Acos(wot) + B sin(wot)

+t(—wo A sin(wpt) + woB cos(wpt))
x, (t) = —woAsin(wot) + woB cos(wot)
+(—woA sin(wot) + woB cos(wpt))

_|_£(—ng cos(wety—w, Bsin(wot) )




Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

F | k
2" + wir = = cos(wpt) wo =/ —
m m

o

(1) = t(A cosluwety+BImwol) )

——

x,(t) = Acos(wot) + B sin(wot)

+t(—wo A sin(wpt) + woB cos(wpt))
x, (t) = —woAsin(wot) + woB cos(wot)
+(—woA sin(wot) + woB cos(wpt))

_|_£(—ng cos(wety—w, Bsin(wot) )




Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

F | k
2" + wir = = cos(wpt) wo =/ —
m m

o

(1) = t(A cosluwety+BImwol) )

——

x,(t) = Acos(wot) + B sin(wot)

+t(—wo A sin(wpt) + woB cos(wpt))
x, (t) = —woAsin(wot) + woB cos(wot)
+(—woA sin(wot) + woB cos(wpt))

_|_£(—ng cos(wety—w, Bsin(wot) )

Fo Fo
2wom 2V km




Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -
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Forced vibrations, no damping, w=wo

e Without damping (v = 0), w = wy -

¢ | ong term behaviour - X, grows unbounded, swamping out X.

z,(t) = t sin(wot)

2\ km



Forced vibrations, no damping, summary

e Plot of the amplitude of the particular solution as a function of w.

A(w)

e Calculated:
Fo
A= 5

m(w§ — w?)

e Plotted with:

F
-9 — 1, Wy — 1
T
1
AwW) =15z =03

e Recall that for w = wq, the
amplitude grows without

bound.



Forced vibrations, with damping
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Forced vibrations, with damping

Amplitude of solution ' |

| ‘ :




