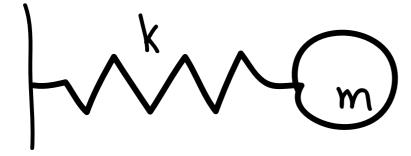
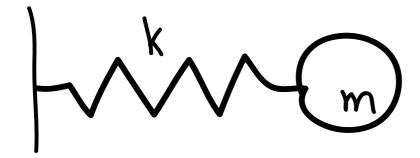
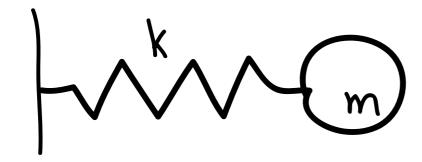
Today

- Mass-springs as models for everything.
- Forced vibrations
 - Newton's 2nd Law with external forcing.
 - Forced mass-spring system without damping away from resonance.
 - Forced mass-spring system without damping at resonance.
 - Forced mass-spring system with damping.
- Midterm (Feb 2, in class) Everything up to and including Tuesday Jan 26 (Method of Undetermined Coefficients).



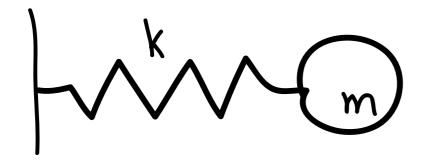
$$-\sqrt{k}$$





$$E = \frac{1}{2}K(x-x_0)^2$$

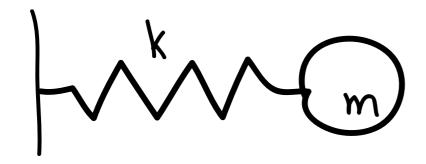
$$F = -\frac{dE}{dx} = -\frac{1}{2}K(x-x_0)^2$$



$$E = \frac{1}{2}K(x-x_0)^2$$

$$E = -\frac{dE}{dx} = -K(x-x_0)$$

$$MQ = F$$
 $MQ = -k(x-x_0)$



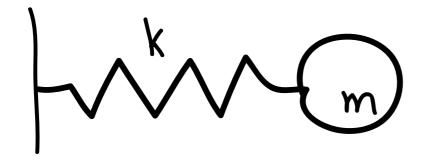
$$E = \frac{1}{2}K(x-x_0)^2$$

$$F = -\frac{dE}{dx} = -K(x-x_0)$$

$$M\alpha = F$$

$$M\alpha = -k(x-x_0)$$

$$Mx'' = -k(x-x_0)$$



$$E = \frac{1}{2}K(x-x_0)^2$$

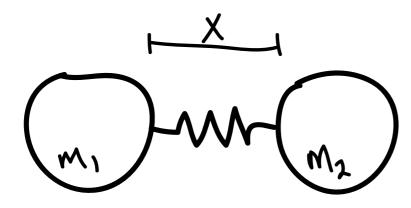
$$F = -\frac{dE}{dx} = -K(x-x_0)$$

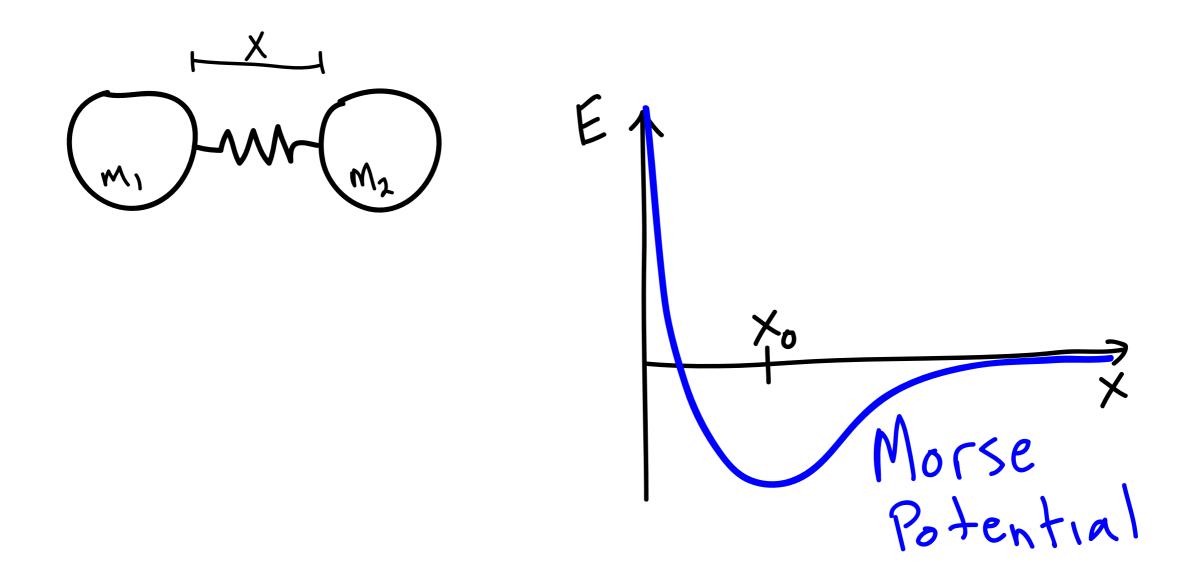
$$MQ = F$$

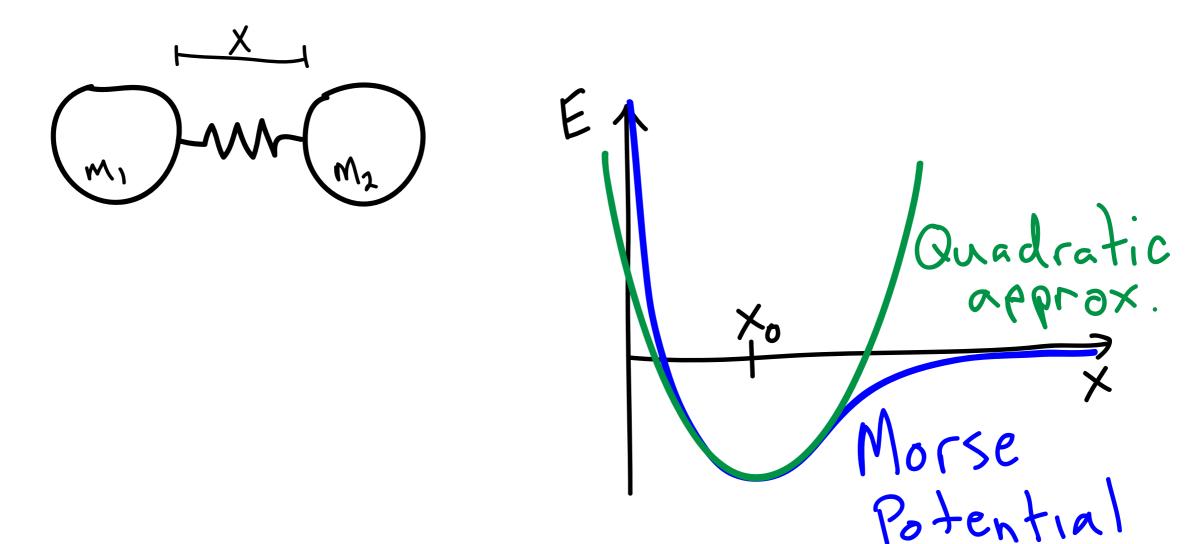
$$MQ = -K(x-x_0)$$

$$Mx'' + Kx = kx_0$$

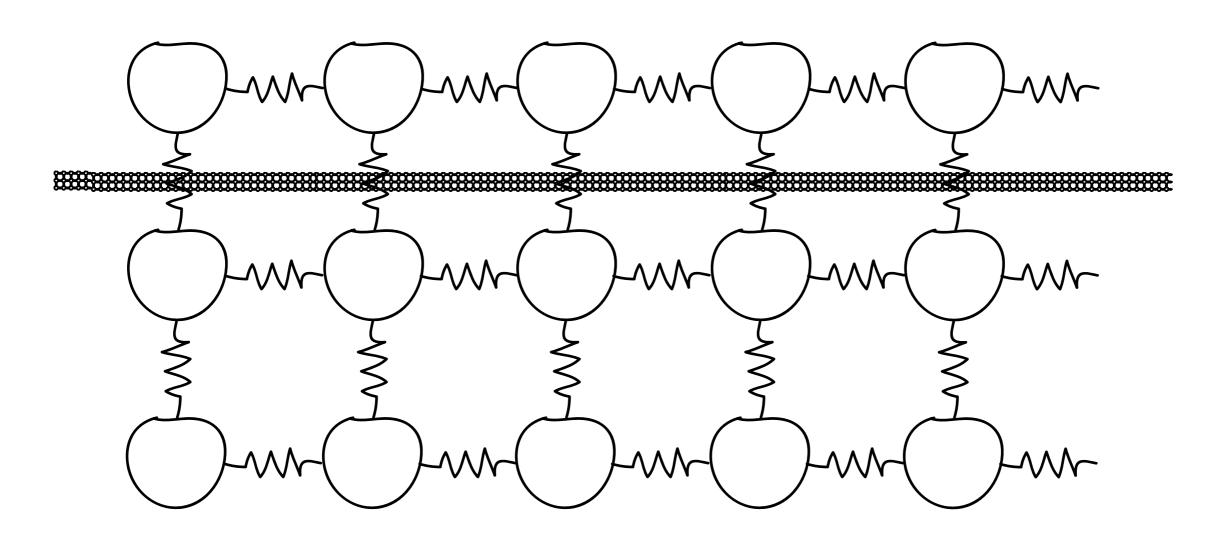
$$Mx'' + kx = kx_0$$







Solid mechanics

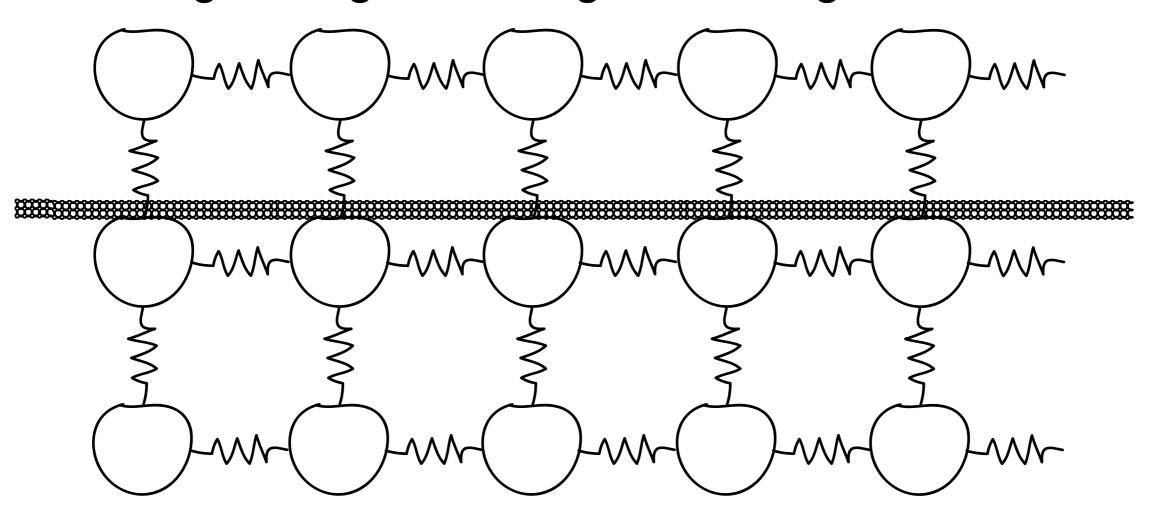


Solid mechanics

e.g. tuning fork, bridges, buildings

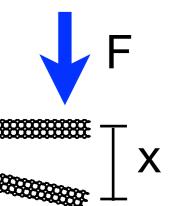
4

Solid mechanics



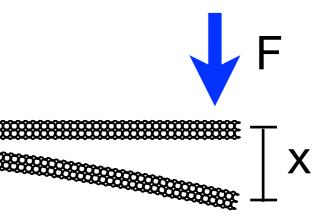
Solid mechanics

Solid mechanics



Solid mechanics

e.g. tuning fork, bridges, buildings

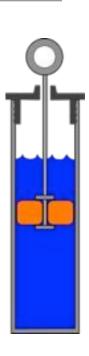


$$x'' = -Kx$$

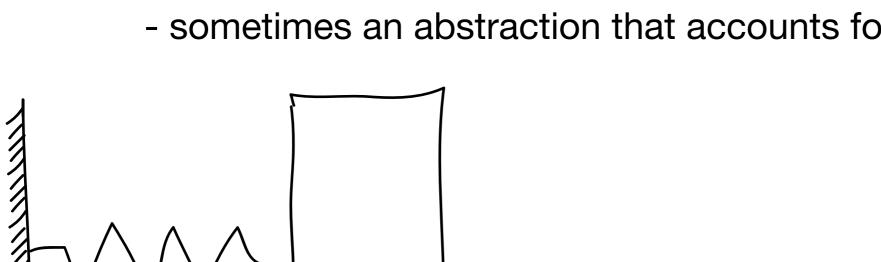
where K depends on the molecular details of the material and the cross-sectional geometry of the rod.

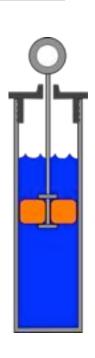
• So far, no x' term so no exponential decay in the solutions.

- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

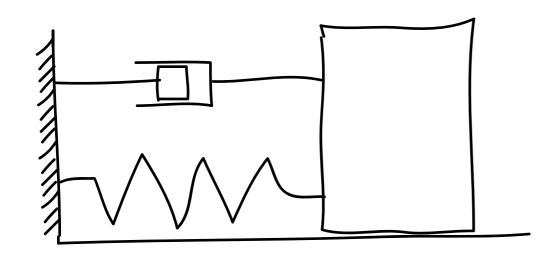


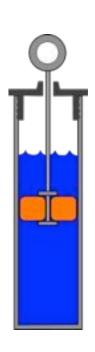
- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.



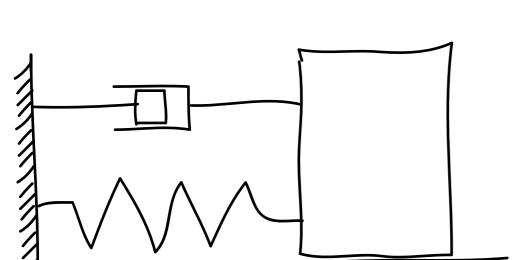


- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.



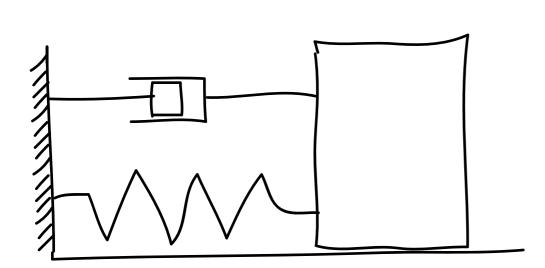


- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

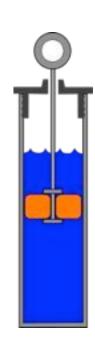


Kelvin-Voigt model

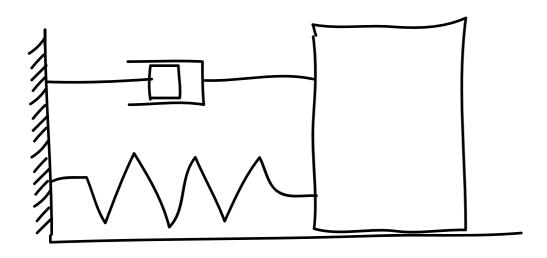
- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.



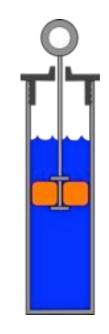
Kelvin-Voigt model



- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

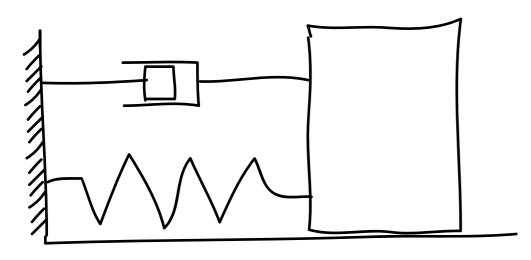


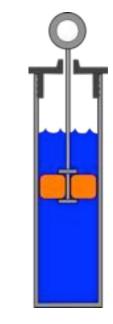
Kelvin-Voigt model



$$mq = -k(x-x_0) - \delta V$$

- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

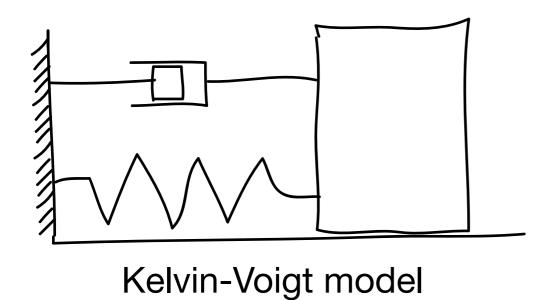




$$mq = -k(x-x_0) - \delta V$$

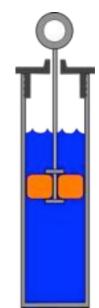
$$WX'' = -K(X-X^{\circ}) - XX'$$

- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

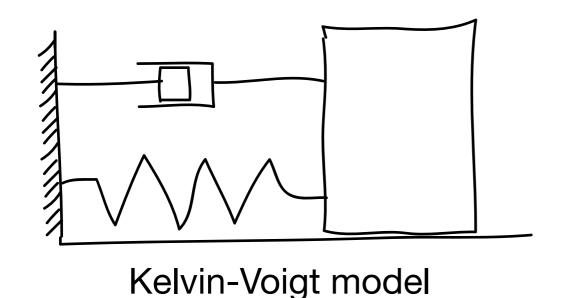


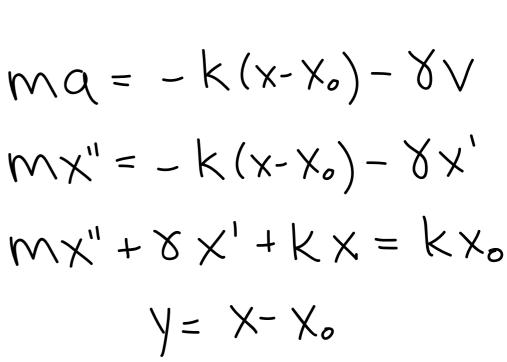
$$mx'' + 8x' + kx = kx_0$$

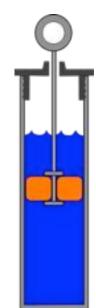
 $mx'' + 8x' + kx = kx_0$



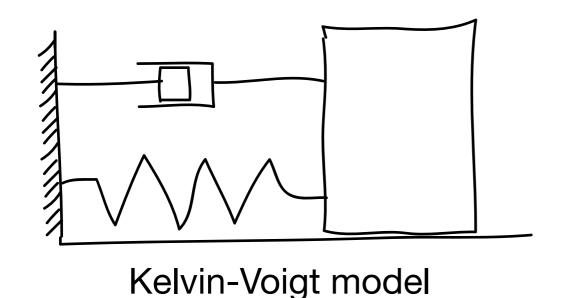
- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

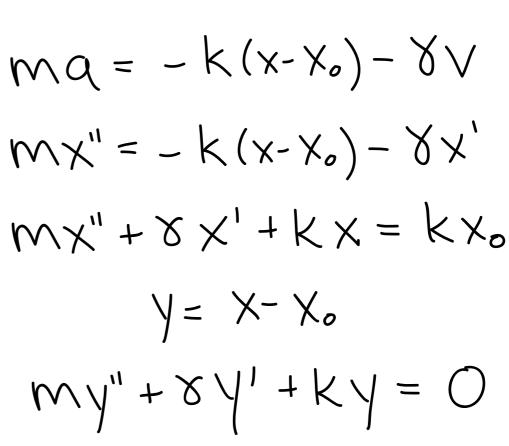


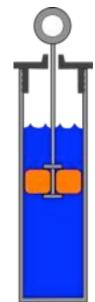


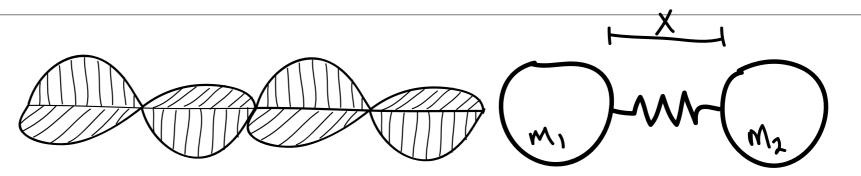


- So far, no x' term so no exponential decay in the solutions.
- Dashpot mechanical element that adds friction.
 - sometimes an abstraction that accounts for energy loss.

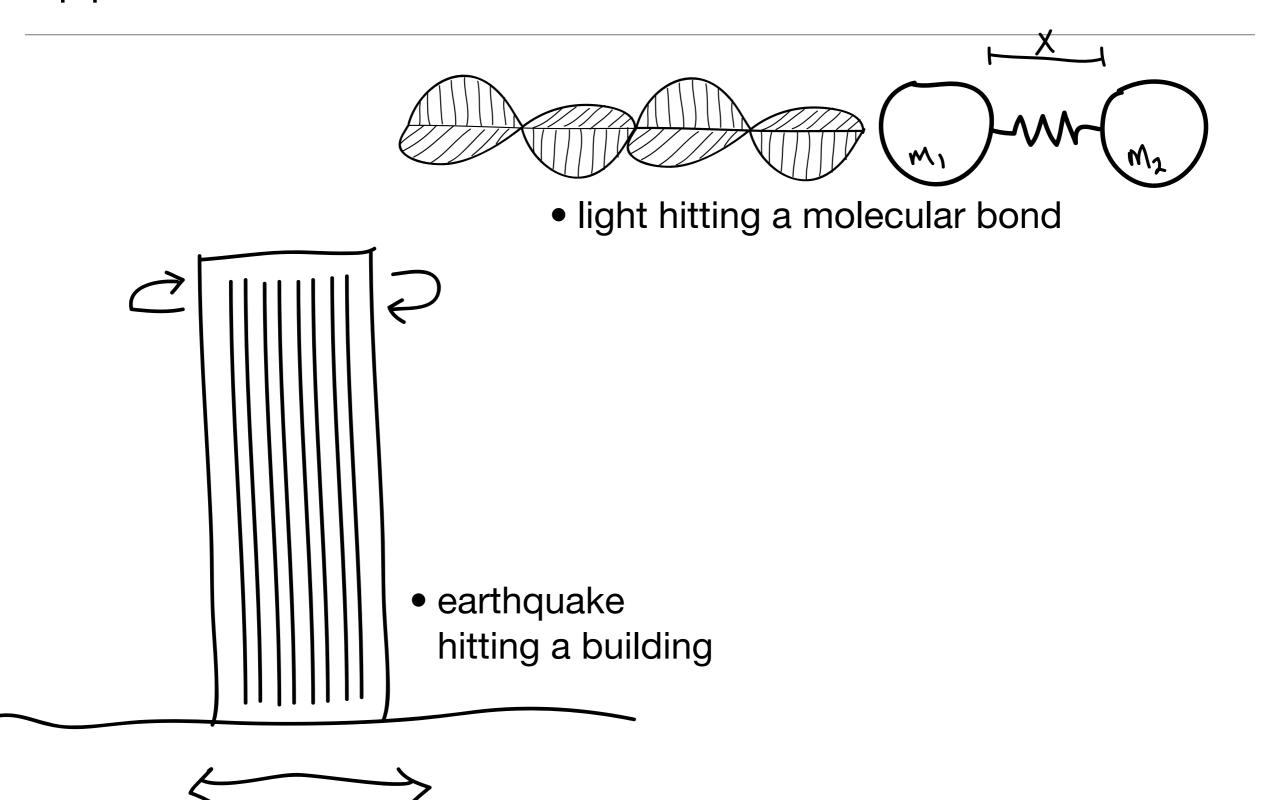


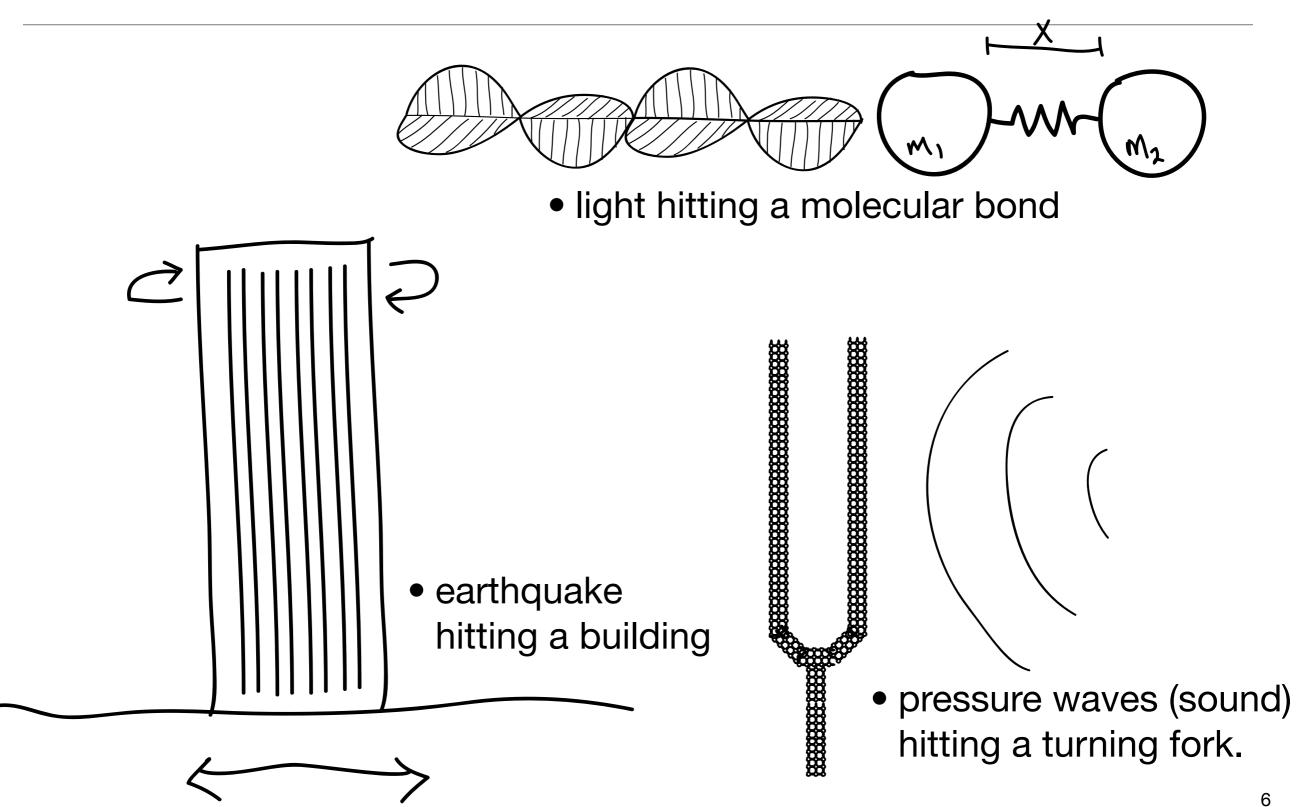






• light hitting a molecular bond





Applications - vibrations, undamped

Undamped mass spring

$$mx'' + kx = 0$$

Applications - vibrations, undamped

Undamped mass spring

$$mx'' + kx = 0$$

(A)
$$x(t) = C_1 e^{-\omega_0 t} + C_2 e^{\omega_0 t}$$

(B)
$$x(t) = C_1 e^{-\omega_0 t} + C_2 t e^{-\omega_0 t}$$

(C)
$$x(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$$

(D) Don't know.

$$\omega_0 = \sqrt{\frac{k}{m}}$$

Undamped mass spring

$$mx'' + kx = 0$$

(A)
$$x(t) = C_1 e^{-\omega_0 t} + C_2 e^{\omega_0 t}$$

(B)
$$x(t) = C_1 e^{-\omega_0 t} + C_2 t e^{-\omega_0 t}$$

$$\uparrow$$
 (C) $x(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$

(D) Don't know.

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$mx'' + kx = 0$$
$$mr^2 + k = 0$$

$$mx'' + kx = 0$$
$$mr^2 + k = 0$$
$$r = \pm \sqrt{\frac{k}{m}}i$$

$$mx'' + kx = 0$$

$$mr^{2} + k = 0$$

$$r = \pm \sqrt{\frac{k}{m}}i$$

$$x(t) = C_{1} \cos(\omega_{0}t) + C_{2} \sin(\omega_{0}t)$$

$$mx'' + kx = 0$$

$$mr^{2} + k = 0$$

$$r = \pm \sqrt{\frac{k}{m}}i$$

$$x(t) = C_{1} \cos(\omega_{0}t) + C_{2} \sin(\omega_{0}t)$$

$$\omega_{0} = \sqrt{\frac{k}{m}}$$

$$mx'' + kx = 0$$
$$mr^2 + k = 0$$
$$r = \pm \sqrt{\frac{k}{m}}i$$

$$x(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 • Natural frequency

- - increases with stiffness
 - decreases with mass

Trig identity reminders

$$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$
$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

Trig identity reminders

$$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$
$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$2\cos(3t + \pi/3) =$$

(A)
$$2\sin(\pi/3)\cos(3t) - 2\sin(\pi/3)\cos(3t)$$

(B)
$$2\sin(\pi/3)\cos(3t) + 2\sin(\pi/3)\cos(3t)$$

(C)
$$2\cos(\pi/3)\cos(3t) - 2\sin(\pi/3)\sin(3t)$$

(D)
$$2\cos(\pi/3)\cos(3t) + 2\sin(\pi/3)\sin(3t)$$

(E) Don't know / still thinking.

Trig identity reminders

$$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$
$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$2\cos(3t + \pi/3) =$$

(A)
$$2\sin(\pi/3)\cos(3t) - 2\sin(\pi/3)\cos(3t)$$

(B)
$$2\sin(\pi/3)\cos(3t) + 2\sin(\pi/3)\cos(3t)$$

$$(C) 2\cos(\pi/3)\cos(3t) - 2\sin(\pi/3)\sin(3t)$$

(D)
$$2\cos(\pi/3)\cos(3t) + 2\sin(\pi/3)\sin(3t)$$

(E) Don't know / still thinking.

Trig identity reminders

$$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$
$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$2\cos(3t + \pi/3) =$$

$$2\cos(\pi/3)\cos(3t) - 2\sin(\pi/3)\sin(3t)$$

$$= \cos(3t) - \sqrt{3}\sin(3t)$$

- Converting from sum-of-sin-cos to a single cos expression:
 - Example:

$$4\cos(2t) + 3\sin(2t)$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

- Converting from sum-of-sin-cos to a single cos expression:
 - Example:

$$4\cos(2t) + 3\sin(2t)$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

- Converting from sum-of-sin-cos to a single cos expression:
 - Example:

$$4\cos(2t) + 3\sin(2t)$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

 $(\cos(A), \sin(A))$ must lie on the unit circle. i.e. $\cos^2(A) + \sin^2(A) = 1$.

- Converting from sum-of-sin-cos to a single cos expression:
 - Example:

$$4\cos(2t) + 3\sin(2t)$$

$$4^{2} + 3^{2} = 5^{2}$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

 $(\cos(A), \sin(A))$ must lie on the unit circle. i.e. $\cos^2(A) + \sin^2(A) = 1$.

- Converting from sum-of-sin-cos to a single cos expression:
 - Example:

$$4\cos(2t) + 3\sin(2t) = 5\left(\frac{4}{5}\cos(2t) + \frac{3}{5}\sin(2t)\right)$$

$$4^{2} + 3^{2} = 5^{2}$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

(cos(A), sin(A)) must lie on the unit circle. i.e. $cos^2(A) + sin^2(A) = 1$.

- Converting from sum-of-sin-cos to a single cos expression:
 - Example:

$$4\cos(2t) + 3\sin(2t)$$

$$= 5\left(\frac{4}{5}\cos(2t) + \frac{3}{5}\sin(2t)\right)$$

$$= 5(\cos(\phi)\cos(2t) + \sin(\phi)\sin(2t))$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

- Converting from sum-of-sin-cos to a single cos expression:
 - Example:

$$4\cos(2t) + 3\sin(2t)$$

$$= 5\left(\frac{4}{5}\cos(2t) + \frac{3}{5}\sin(2t)\right)$$

$$= 5(\cos(\phi)\cos(2t) + \sin(\phi)\sin(2t))$$

$$= 5\cos(2t - \phi)$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

- Converting from sum-of-sin-cos to a single cos expression:
 - Example:

$$4\cos(2t) + 3\sin(2t)$$

$$= 5\left(\frac{4}{5}\cos(2t) + \frac{3}{5}\sin(2t)\right)$$

$$= 5(\cos(\phi)\cos(2t) + \sin(\phi)\sin(2t))$$

$$= 5\cos(2t - \phi)$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

- Converting from sum-of-sin-cos to a single cos expression:
 - Example:

$$4\cos(2t) + 3\sin(2t)
= 5\left(\frac{4}{5}\cos(2t) + \frac{3}{5}\sin(2t)\right)
= 5(\cos(\phi)\cos(2t) + \sin(\phi)\sin(2t))$$

$$= 5\cos(2t - \phi)$$

$$\phi$$

$$\phi = 0.9273$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

$$y(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$$

$$y(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$$

$$\bullet$$
 Step 1 - Factor out $A=\sqrt{C_1^2+C_2^2}$.

$$y(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$$

$$\bullet$$
 Step 1 - Factor out $A=\sqrt{C_1^2+C_2^2}$.

• Step 2 - Find the angle
$$\phi$$
 for which $\cos(\phi)=\frac{C_1}{\sqrt{C_1^2+C_2^2}}$ and $\sin(\phi)=\frac{C_2}{\sqrt{C_1^2+C_2^2}}$.

$$y(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$$

- \bullet Step 1 Factor out $A=\sqrt{C_1^2+C_2^2}$.
- Step 2 Find the angle ϕ for which $\cos(\phi)=\frac{C_1}{\sqrt{C_1^2+C_2^2}}$ and $\sin(\phi)=\frac{C_2}{\sqrt{C_1^2+C_2^2}}$.
- ullet Step 3 Rewrite the solution as $y(t) = A\cos(\omega_0 t \phi)$.

$$mx'' + \gamma x' + kx = 0$$

$$m, \gamma, k > 0$$

$$mx'' + \gamma x' + kx = 0 \qquad m, \gamma, k > 0$$

$$\Rightarrow mr^2 + \gamma r + k = 0$$

$$mx'' + \gamma x' + kx = 0$$
 $m, \gamma, k > 0$
 $\Rightarrow mr^2 + \gamma r + k = 0$

$$r_{1,2} = -\frac{\gamma}{2m} \pm \frac{\sqrt{\gamma^2 - 4km}}{2m}$$

$$mx'' + \gamma x' + kx = 0 \qquad m, \gamma, k > 0$$

$$\Rightarrow mr^2 + \gamma r + k = 0$$

$$r_{1,2} = -\frac{\gamma}{2m} \pm \frac{\sqrt{\gamma^2 - 4km}}{2m} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

$$mx'' + \gamma x' + kx = 0 \qquad m, \gamma, k > 0$$

$$\Rightarrow mr^2 + \gamma r + k = 0$$

$$r_{1,2} = -\frac{\gamma}{2m} \pm \frac{\sqrt{\gamma^2 - 4km}}{2m} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

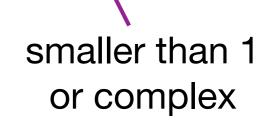
- (A) Always complex roots.
- (B) Always real roots.
- (C) Always one +, one root.
- (D) Never exp growth.
- (E) Don't know / still thinking.

$$mx'' + \gamma x' + kx = 0 \qquad m, \gamma, k > 0$$

$$\Rightarrow mr^2 + \gamma r + k = 0$$

$$r_{1,2} = -\frac{\gamma}{2m} \pm \frac{\sqrt{\gamma^2 - 4km}}{2m} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

- (A) Always complex roots.
- (B) Always real roots.
- (C) Always one +, one root.
- (D) Never exp growth.
- (E) Don't know / still thinking.

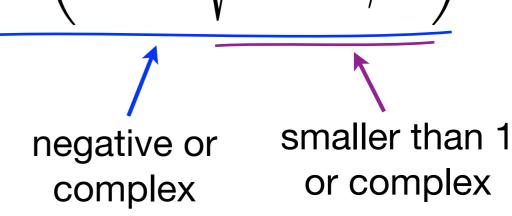


$$mx'' + \gamma x' + kx = 0 \qquad m, \gamma, k > 0$$

$$\Rightarrow mr^2 + \gamma r + k = 0$$

$$r_{1,2} = -\frac{\gamma}{2m} \pm \frac{\sqrt{\gamma^2 - 4km}}{2m} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

- (A) Always complex roots.
- (B) Always real roots.
- (C) Always one +, one root.
- (D) Never exp growth.
- (E) Don't know / still thinking.

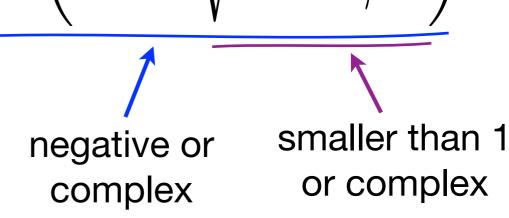


$$mx'' + \gamma x' + kx = 0 \qquad m, \gamma, k > 0$$

$$\Rightarrow mr^2 + \gamma r + k = 0$$

$$r_{1,2} = -\frac{\gamma}{2m} \pm \frac{\sqrt{\gamma^2 - 4km}}{2m} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

- (A) Always complex roots.
- (B) Always real roots.
- (C) Always one +, one root.
- (D) Never exp growth.
 - (E) Don't know / still thinking.



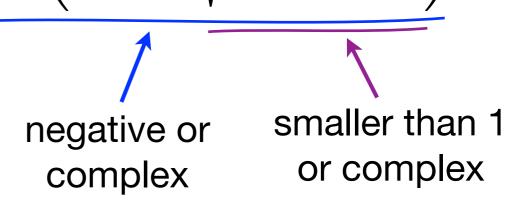
Damped mass-spring

$$mx'' + \gamma x' + kx = 0 \qquad m, \gamma, k > 0$$

$$\Rightarrow mr^2 + \gamma r + k = 0$$

$$r_{1,2} = -\frac{\gamma}{2m} \pm \frac{\sqrt{\gamma^2 - 4km}}{2m} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

- (A) Always complex roots.
- (B) Always real roots.
- (C) Always one +, one root.
- (D) Never exp growth.
 - (E) Don't know / still thinking.



There are three cases...

$$r_{1,2} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

(i)
$$\frac{4km}{\gamma^2} < 1$$

(ii)
$$\frac{4km}{\gamma^2} = 1$$

(iii)
$$\frac{4km}{\gamma^2} > 1$$

$$r_{1,2} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

(i)
$$\frac{4km}{\gamma^2} < 1$$
 \Rightarrow r₁, r₂ < 0, exponential decay only (over damped - γ large)

(ii)
$$\frac{4km}{\gamma^2} = 1$$

(iii)
$$\frac{4km}{\gamma^2} > 1$$

$$r_{1,2} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

(i)
$$\frac{4km}{\gamma^2} < 1$$
 \Rightarrow r₁, r₂ < 0, exponential decay only (over damped - γ large)

(ii)
$$\frac{4km}{\gamma^2} = 1$$
 \Rightarrow r₁=r₂, exp and t*exp decay (critically damped)

(iii)
$$\frac{4km}{\gamma^2} > 1$$

$$r_{1,2} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

(i)
$$\frac{4km}{\gamma^2} < 1$$
 \Rightarrow r₁, r₂ < 0, exponential decay only (over damped - γ large)

(ii)
$$\frac{4km}{\gamma^2} = 1$$
 \Rightarrow r₁=r₂, exp and t*exp decay (critically damped)

(iii)
$$\frac{4km}{\gamma^2} > 1$$
 $\Rightarrow r = \alpha \pm \beta i$
$$\alpha = -\frac{\gamma}{2m} < 0$$

$$r_{1,2} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

(i)
$$\frac{4km}{\gamma^2} < 1$$
 \Rightarrow r₁, r₂ < 0, exponential decay only (over damped - γ large)

(ii)
$$\frac{4km}{\gamma^2} = 1$$
 \Rightarrow r₁=r₂, exp and t*exp decay (critically damped)

(iii)
$$\frac{4km}{\gamma^2}>1$$
 \Rightarrow $r=\alpha\pm\beta i$
$$\alpha=-\frac{\gamma}{2m}<0 \Rightarrow \text{ decaying oscillations (under damped - }\gamma\text{ small})$$

$$r_{1,2} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

(i)
$$\frac{4km}{\gamma^2} < 1$$
 \Rightarrow r₁, r₂ < 0, exponential decay only (over damped - γ large)

(ii)
$$\frac{4km}{\gamma^2} = 1$$
 \Rightarrow r₁=r₂, exp and t*exp decay (critically damped)

(iii)
$$\frac{4km}{\gamma^2} > 1$$
 $\Rightarrow r = \alpha \pm \beta i$
$$\alpha = -\frac{\gamma}{2m} < 0 \Rightarrow \text{ decaying oscillations (under damped - } \gamma \text{ small})$$

$$x(t) = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$$

$$r_{1,2} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

(i)
$$\frac{4km}{\gamma^2} < 1$$
 \Rightarrow r₁, r₂ < 0, exponential decay only (over damped - γ large)

(ii)
$$\frac{4km}{\gamma^2} = 1$$
 \Rightarrow r₁=r₂, exp and t*exp decay (critically damped)

(iii)
$$\frac{4km}{\gamma^2} > 1$$
 $\Rightarrow r = \alpha \pm \beta i$
$$\alpha = -\frac{\gamma}{2m} < 0 \Rightarrow \text{ decaying oscillations (under damped - } \gamma \text{ small})$$

$$x(t) = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$$

$$\beta = \sqrt{\frac{4km}{\gamma^2} - 1}$$

$$r_{1,2} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

(i)
$$\frac{4km}{\gamma^2} < 1$$
 \Rightarrow r₁, r₂ < 0, exponential decay only (over damped - γ large)

(ii)
$$\frac{4km}{\gamma^2} = 1$$
 \Rightarrow r₁=r₂, exp and t*exp decay (critically damped)

(iii)
$$\frac{4km}{\gamma^2} > 1$$
 $\Rightarrow r = \alpha \pm \beta i$ $\alpha = -\frac{\gamma}{2m} < 0 \Rightarrow \text{decaying oscillations}$ (under damped - γ small) $x(t) = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$ $\beta = \sqrt{\frac{4km}{\gamma^2} - 1}$ \leftarrow called pseudo-frequency

Damped oscillations

$$r_{1,2} = \frac{\gamma}{2m} \left(-1 \pm \sqrt{1 - \frac{4km}{\gamma^2}} \right)$$

(i)
$$\frac{4km}{\gamma^2} < 1$$
 \Rightarrow r₁, r₂ < 0, exponential decay only (over damped - γ large)

(ii)
$$\frac{4km}{\gamma^2} = 1$$
 \Rightarrow r₁=r₂, exp and t*exp decay (critically damped)

(iii)
$$\frac{4km}{\gamma^2} > 1 \qquad \Rightarrow \quad r = \alpha \pm \beta i$$

For graphs, see:

https://www.desmos.com/calculator/8v1nueimow

$$r = \alpha \pm \beta i$$

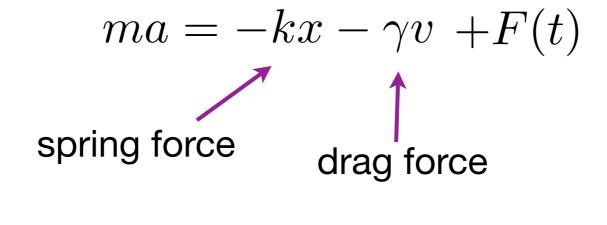
$$\alpha = -\frac{\gamma}{2m} < 0 \Rightarrow \text{ decaying oscillations (under damped - } \gamma \text{ small})$$

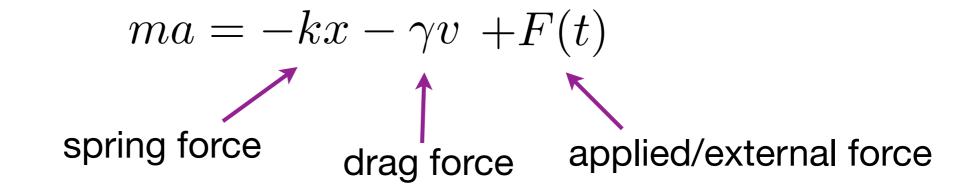
$$x(t) = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$$

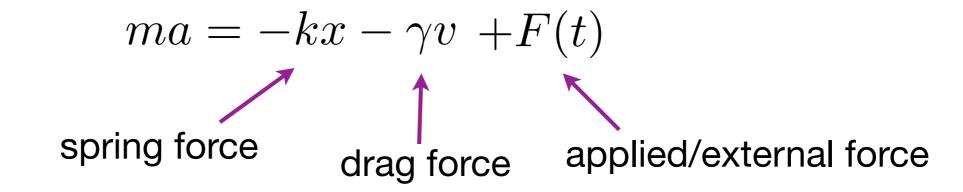
$$\beta = \sqrt{\frac{4km}{\gamma^2} - 1} \qquad \text{called pseudo-frequency}$$

$$ma = -kx - \gamma v + F(t)$$

$$ma = -kx - \gamma v \ + F(t)$$
 spring force

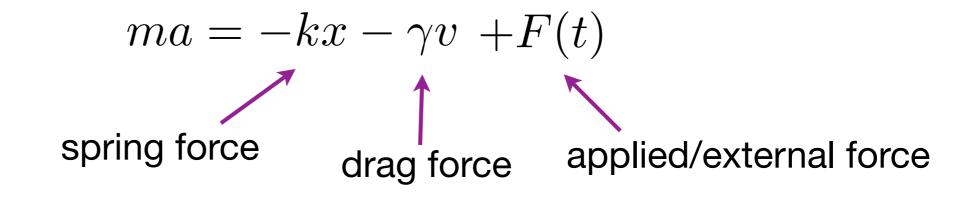






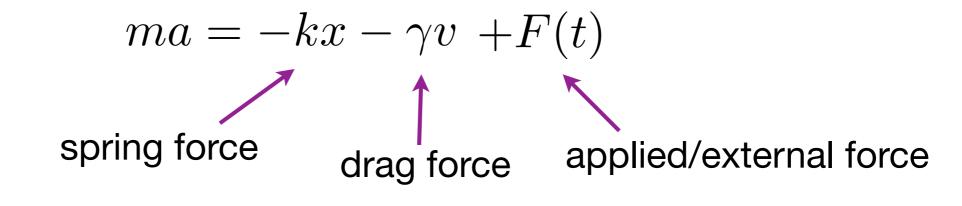
$$mx'' + \gamma x' + kx = F(t)$$

Newton's 2nd Law:



$$mx'' + \gamma x' + kx = F(t)$$

 Forced vibrations - nonhomogeneous linear equation with constant coefficients.



$$mx'' + \gamma x' + kx = F(t)$$

- Forced vibrations nonhomogeneous linear equation with constant coefficients.
- Building during earthquake, tuning fork near instrument, car over washboard road, polar bond under EM stimulus (classical, not quantum).

Forced vibrations, no damping

- Without damping ($\gamma=0$). forcing frequency $mx''+kx=F_0\cos(\omega t)$
- For what value(s) of w does this equation have an unbounded solution?

(A)
$$w = sqrt(k/m)$$

(B)
$$w = m/F_0$$

(C)
$$w = (k/m)^2$$

(D)
$$w = 2\pi$$

Forced vibrations, no damping

- Without damping ($\gamma=0$). forcing frequency $mx''+kx=F_0\cos(\omega t)$
- For what value(s) of w does this equation have an unbounded solution?

$$(A)$$
 w = sqrt(k/m)

(B)
$$w = m/F_0$$

(C)
$$w = (k/m)^2$$

(D)
$$w = 2\pi$$

• Without damping ($\gamma=0$). forcing frequency $mx''+kx=F_0\cos(\omega t)$

• Without damping ($\gamma=0$). forcing frequency $mx''+kx=F_0\cos(\omega t)$ mx''+kx=0

• Without damping ($\gamma=0$). forcing frequency $mx''+kx=F_0\cos(\omega t)$ mx''+kx=0 $x_h(t)=C_1\cos(\omega_0 t)+C_2\sin(\omega_0 t)$

• Without damping ($\gamma=0$). forcing frequency $mx''+kx=F_0\cos(\omega t)$ mx''+kx=0 $x_h(t)=C_1\cos(\omega_0 t)+C_2\sin(\omega_0 t)$ $\omega_0=?$

• Without damping (
$$\gamma=0$$
). forcing frequency
$$mx''+kx=F_0\cos(\omega t)$$

$$mx''+kx=0$$

$$x_h(t)=C_1\cos(\omega_0 t)+C_2\sin(\omega_0 t)$$

$$\omega_0=\sqrt{\frac{k}{m}}$$

• Without damping ($\gamma=0$). forcing frequency $mx''+kx=F_0\cos(\omega t)$ mx''+kx=0 $x_h(t)=C_1\cos(\omega_0 t)+C_2\sin(\omega_0 t)$ $\omega_0=\sqrt{\frac{k}{m}}$ natural frequency

 $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0

$$x_h(t)=C_1\cos(\omega_0 t)+C_2\sin(\omega_0 t)$$
 $\omega_0=\sqrt{\frac{k}{m}}$ Case 1: $\omega\neq\omega_0$

• Case 1: $\omega \neq \omega_0$

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 natural frequency

 $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0

$$x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$$

• Case 1: $\omega \neq \omega_0$

$$x_p(t) = A\cos(\omega t) + B\sin(\omega t)$$

$$x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$$
 Case 1: $\omega \neq \omega_0$ natural frequency

 $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$ Sase 1: $\omega \neq \omega_0$

• Case 1:
$$\omega \neq \omega_0$$

$$x_p(t) = A\cos(\omega t) + B\sin(\omega t)$$

$$A = ?, B = ?$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 natural frequency

• Without damping ($\gamma=0$). forcing frequency $mx''+kx=F_0\cos(\omega t)$ mx''+kx=0 $x_h(t)=C_1\cos(\omega_0 t)+C_2\sin(\omega_0 t)$ $\omega_0=\sqrt{\frac{k}{m}}$ • Case 1: $\omega\neq\omega_0$ natural frequency $x_p(t)=A\cos(\omega t)+B\sin(\omega t)$

 $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$

 $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_{p}(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_p''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p =$

 $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_p(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_p''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p = (k - \omega^2 m)A\cos(\omega t) + (k - \omega^2 m)B\sin(\omega t)$

 $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_n(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p = (k - \omega^2 m)A\cos(\omega t) + (k - \omega^2 m)B\sin(\omega t)$ $= F_0 \cos(\omega t)$

 $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$ Ease 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_n(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p = (k - \omega^2 m)A\cos(\omega t) + (k - \omega^2 m)B\sin(\omega t)$ $= F_0 \cos(\omega t) \implies A = \frac{F_0}{(k - \omega^2 m)}$

 $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$ Ease 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_n(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p = (k - \omega^2 m)A\cos(\omega t) + (k - \omega^2 m)B\sin(\omega t)$ $=F_0\cos(\omega t) \Rightarrow A = \frac{F_0}{m(\omega_0^2 - \omega^2)}$

 $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$ Ease 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_n(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p = (k - \omega^2 m)A\cos(\omega t) + (k - \omega^2 m)B\sin(\omega t)$ $=F_0\cos(\omega t) \ \Rightarrow A=rac{F_0}{m(\omega_0^2-\omega^2)}$, B=0

- ullet Without damping ($\gamma=0$), $\omega
 eq\omega_0$.
 - Simple case:

ullet Without damping ($\gamma=0$), $\omega
eq\omega_0$.

• Simple case: x(0) = x'(0) = 0

ullet Without damping ($\gamma=0$), $\omega
eq\omega_0$.

• Simple case:
$$x(0) = x'(0) = 0 \implies C_1 = -\frac{F_0}{m(\omega_0^2 - \omega^2)}, \quad C_2 = 0.$$

ullet Without damping ($\gamma=0$), $\omega
eq\omega_0$.

• Simple case:
$$x(0) = x'(0) = 0 \implies C_1 = -\frac{F_0}{m(\omega_0^2 - \omega^2)}, \quad C_2 = 0.$$

$$x(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \left(\cos(\omega t) - \cos(\omega_0 t)\right)$$

- ullet Without damping ($\gamma=0$), $\omega
 eq\omega_0$.
 - Simple case: $x(0) = x'(0) = 0 \implies C_1 = -\frac{F_0}{m(\omega_0^2 \omega^2)}, \quad C_2 = 0.$

$$x(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \left(\cos(\omega t) - \cos(\omega_0 t)\right)$$

$$\cos(B) - \cos(A) = 2\sin\left(\frac{A-B}{2}\right)\sin\left(\frac{A+B}{2}\right)$$

- ullet Without damping ($\gamma=0$), $\omega
 eq\omega_0$.
 - Simple case: $x(0) = x'(0) = 0 \implies C_1 = -\frac{F_0}{m(\omega_0^2 \omega^2)}, \quad C_2 = 0.$

$$x(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \left(\cos(\omega t) - \cos(\omega_0 t)\right)$$

$$\cos(B) - \cos(A) = 2\sin\left(\frac{A - B}{2}\right)\sin\left(\frac{A + B}{2}\right)$$

$$x(t) = \frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin\left(\frac{(\omega_0 - \omega)t}{2}\right) \sin\left(\frac{(\omega_0 + \omega)t}{2}\right)$$

Forced vibrations, no damping, away from wo

- ullet Without damping ($\gamma=0$), $\omega
 eq\omega_0$.
 - Simple case: $x(0) = x'(0) = 0 \implies C_1 = -\frac{F_0}{m(\omega_0^2 \omega^2)}, \quad C_2 = 0.$

$$x(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \left(\cos(\omega t) - \cos(\omega_0 t)\right)$$

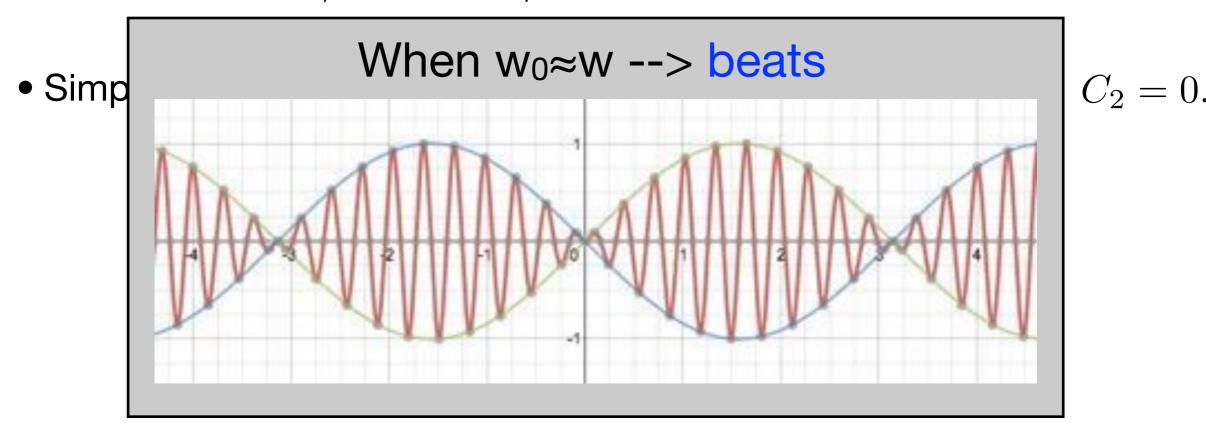
$$\cos(B) - \cos(A) = 2\sin\left(\frac{A - B}{2}\right)\sin\left(\frac{A + B}{2}\right)$$

$$x(t) = \frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin\left(\frac{(\omega_0 - \omega)t}{2}\right) \sin\left(\frac{(\omega_0 + \omega)t}{2}\right)$$

amplitude envelope

Forced vibrations, no damping, away from wo

ullet Without damping ($\gamma=0$), $\omega
eq\omega_0$.

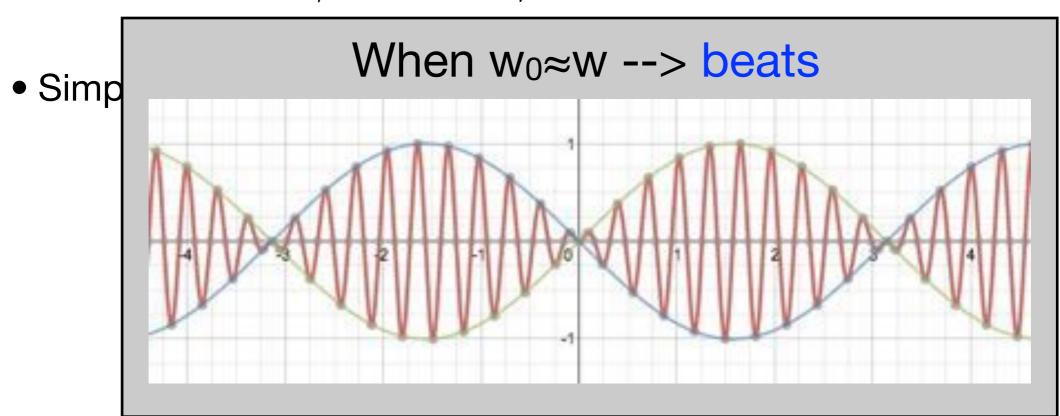


$$x(t) = \underbrace{\frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin\left(\frac{(\omega_0 - \omega)t}{2}\right) \sin\left(\frac{(\omega_0 + \omega)t}{2}\right)}_{\text{min}} \sin\left(\frac{(\omega_0 + \omega)t}{2}\right)$$

amplitude envelope

Forced vibrations, no damping, away from wo

ullet Without damping ($\gamma=0$), $\omega
eq \omega_0$.



$$C_2 = 0.$$

$$x(t) = \frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin\left(\frac{(\omega_0 - \omega)t}{2}\right) \sin\left(\frac{(\omega_0 + \omega)t}{2}\right)$$

amplitude envelope

https://www.desmos.com/calculator/cfjfpxef1w

ullet Without damping ($\gamma=0$), $\omega=\omega_0$.

ullet Without damping ($\gamma=0$), $\omega=\omega_0$.

$$mx'' + kx = F_0 \cos(\omega_0 t)$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

• Without damping ($\gamma=0$), $\omega=\omega_0$. $x''+\omega_0^2x=\frac{F_0}{m}\cos(\omega_0t)$

$$x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t)$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

ullet Without damping ($\gamma=0$), $\omega=\omega_0$.

$$x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t)$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

RHS solves the homogenous equation:

$$r^2 + \omega_0^2 = 0$$

$$r = \pm \omega_0 i$$

• Without damping ($\gamma=0$), $\omega=\omega_0$. $x''+\omega_0^2x=\frac{F_0}{m}\cos(\omega_0t) \qquad \qquad \omega_0=\sqrt{\frac{k}{m}}$ $x_p(t)=t(A\cos(\omega_0t)+B\sin(\omega_0t))$

RHS solves the homogenous equation:

$$r^2 + \omega_0^2 = 0$$
$$r = \pm \omega_0 i$$

• Without damping ($\gamma=0$), $\omega=\omega_0$. $x''+\omega_0^2x=\frac{F_0}{m}\cos(\omega_0t) \qquad \omega_0=\sqrt{\frac{k}{m}}$ $x_p(t)=t(A\cos(\omega_0t)+B\sin(\omega_0t))$ $x'_p(t)=A\cos(\omega_0t)+B\sin(\omega_0t) +t(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$

• Without damping ($\gamma=0$), $\omega=\omega_0$. $x''+\omega_0^2x=\frac{F_0}{m}\cos(\omega_0t) \qquad \omega_0=\sqrt{\frac{k}{m}}$ $x_p(t)=t(A\cos(\omega_0t)+B\sin(\omega_0t))$ $x'_p(t)=A\cos(\omega_0t)+B\sin(\omega_0t) +t(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$ $x''_p(t)=-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t)$

• Without damping (
$$\gamma=0$$
), $\omega=\omega_0$.
$$x''+\omega_0^2x=\frac{F_0}{m}\cos(\omega_0t) \qquad \omega_0=\sqrt{\frac{k}{m}}$$

$$x_p(t)=t(A\cos(\omega_0t)+B\sin(\omega_0t))$$

$$x'_p(t)=A\cos(\omega_0t)+B\sin(\omega_0t) +t(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

$$x''_p(t)=-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t) +(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

• Without damping (
$$\gamma=0$$
), $\omega=\omega_0$.
$$x''+\omega_0^2x=\frac{F_0}{m}\cos(\omega_0t) \qquad \omega_0=\sqrt{\frac{k}{m}}$$

$$x_p(t)=t(A\cos(\omega_0t)+B\sin(\omega_0t))$$

$$x'_p(t)=A\cos(\omega_0t)+B\sin(\omega_0t) +t(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

$$x''_p(t)=-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t) +(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t)) +t(-\omega_0A\sin(\omega_0t)-\omega_0^2B\sin(\omega_0t))$$

• Without damping (
$$\gamma=0$$
), $\omega=\omega_0$.
$$x''+\omega_0^2x=\frac{F_0}{m}\cos(\omega_0t) \qquad \omega_0=\sqrt{\frac{k}{m}}$$

$$x_p(t)=t(A\cos(\omega_0t)+B\sin(\omega_0t))$$

$$x'_p(t)=A\cos(\omega_0t)+B\sin(\omega_0t) +t(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

$$x''_p(t)=-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t) +(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t)) +t(-\omega_0A\sin(\omega_0t)-\omega_0^2B\sin(\omega_0t))$$

• Without damping (
$$\gamma=0$$
), $\omega=\omega_0$.
$$x''+\omega_0^2x=\frac{F_0}{m}\cos(\omega_0t) \qquad \omega_0=\sqrt{\frac{k}{m}}$$

$$x_p(t)=t(A\cos(\omega_0t)+B\sin(\omega_0t))$$

$$x'_p(t)=A\cos(\omega_0t)+B\sin(\omega_0t) +t(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

$$x''_p(t)=-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t) +(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

$$+(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

$$+t(-\omega_0^2A\cos(\omega_0t)-\omega_0^2B\sin(\omega_0t))$$

$$A=0$$

• Without damping (
$$\gamma=0$$
), $\omega=\omega_0$.
$$x''+\omega_0^2x=\frac{F_0}{m}\cos(\omega_0t) \qquad \omega_0=\sqrt{\frac{k}{m}}$$

$$x_p(t)=\underline{t}(A\cos(\omega_0t)+B\sin(\omega_0t))$$

$$x'_p(t)=A\cos(\omega_0t)+B\sin(\omega_0t) +t(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

$$x''_p(t)=-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t) +(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

$$+(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

$$+t(-\omega_0^2A\cos(\omega_0t)-\omega_0^2B\sin(\omega_0t))$$

$$A=0$$

$$B=\frac{F_0}{2\omega_0m}=\frac{F_0}{2\sqrt{km}}$$

• Without damping (
$$\gamma=0$$
), $\omega=\omega_0$.
$$x''+\omega_0^2x=\frac{F_0}{m}\cos(\omega_0t)\qquad \omega_0=\sqrt{\frac{k}{m}}$$

$$x_p(t)=\underline{t}(A\cos(\omega_0t)+B\sin(\omega_0t))$$

$$x'_p(t)=A\cos(\omega_0t)+B\sin(\omega_0t)\\ +t(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

$$x''_p(t)=-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t)\\ +(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))\\ +(-\omega_0A\sin(\omega_0t)+\omega_0B\cos(\omega_0t))$$

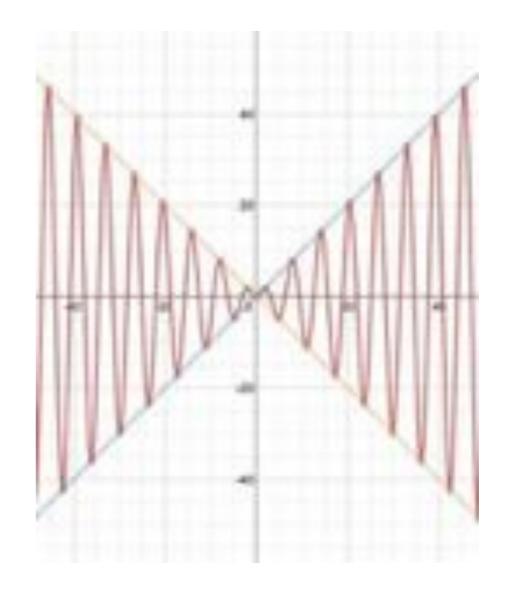
$$+t(-\omega_0^2A\cos(\omega_0t)-\omega_0^2B\sin(\omega_0t))$$

$$A=0\\ B=\frac{F_0}{2\omega_0m}=\frac{F_0}{2\sqrt{km}}$$

$$x_p(t)=\frac{F_0}{2\sqrt{km}}t\sin(\omega_0t)$$

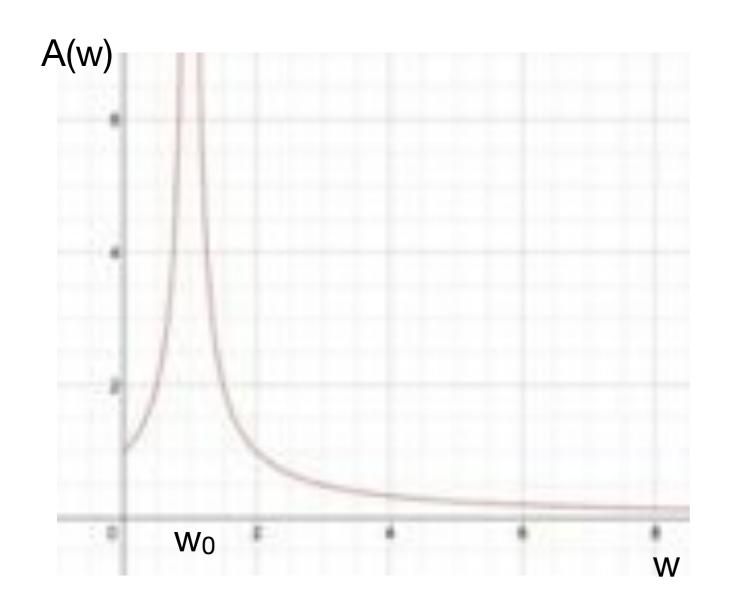
- ullet Without damping ($\gamma=0$), $\omega=\omega_0$.
 - Long term behaviour xp grows unbounded, swamping out xh.

$$x_p(t) = \frac{F_0}{2\sqrt{km}}t\sin(\omega_0 t)$$



Forced vibrations, no damping, summary

ullet Plot of the amplitude of the particular solution as a function of ω .



Calculated:

$$A = \frac{F_0}{m(\omega_0^2 - \omega^2)}$$

• Plotted with:

$$\frac{F_0}{m} = 1, \ w_0 = 1$$

$$A(\omega) = \frac{1}{|\omega_0^2 - \omega^2|}$$

• Recall that for $\omega = \omega_0$, the amplitude grows without bound.

Forced vibrations, with damping

$$\begin{array}{lll}
M \times^{1} + 8 \times^{1} + k \times = F_{0} \cos \omega t \\
X^{11} + C \times^{1} + \omega_{x}^{2} \times = F_{0} \cos \omega t \\
X^{11} + C \times^{1} + \omega_{x}^{2} \times = F_{0} \cos \omega t
\end{array}$$

$$\begin{array}{lll}
Xp &= A \cos \omega t + B \sin \omega t \\
Yp' &= -\omega A \sin \omega t + \omega B \cos \omega t \\
Yp' &= -\omega^{2} A \cos \omega t - \omega^{2} B \sin \omega t$$

$$-\omega^{2} A \cos \omega t - \omega^{2} B \sin \omega t + C(-\omega A \sin \omega t + \omega B \cos \omega t) \\
+ \omega_{x}^{1} (A \cos \omega t + B \sin \omega t) &= F_{0} \cos \omega t
\end{array}$$

$$\begin{array}{lll}
(-\omega^{2} A + c \omega B + \omega_{x}^{2} A) \cos \omega t + (-\omega^{2} B - c \omega A + \omega_{x}^{2} B) \sin \omega t = F_{0} \cos \omega t$$

$$A &= F_{0} \qquad \frac{\omega_{0}^{2} - \omega^{2}}{(c\omega)^{2} + (\omega_{x}^{2} - \omega^{2})}$$

$$A &= F_{0} \qquad \frac{C\omega}{(c\omega)^{2} + (\omega_{x}^{2} - \omega^{2})}$$

$$Xp(t) &= F_{0} \qquad \frac{C\omega}{(c\omega)^{2} + (\omega_{x}^{2} - \omega^{2})}$$

$$Xp(t) &= F_{0} \qquad \frac{C\omega}{(c\omega)^{2} + (\omega_{x}^{2} - \omega^{2})}$$

$$Xp(t) &= F_{0} \qquad \frac{C\omega}{(c\omega)^{2} + (\omega_{x}^{2} - \omega^{2})}$$

Forced vibrations, with damping

