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Abstract

Defibrillation of cardiac tissue can be viewed in the context of dynamical systems theory as the attempt to move a dynamical

system from the basin of attraction of one attractor (fibrillation) to another (the uniform rest state) by applying a stimulus whose

form is physically constrained. Here we give an introduction to the physical mechanism of cardiac defibrillation from this dynamical

perspective and examine the role of resistive inhomogeneity on defibrillation efficacy. Using numerical simulations with rotating

waves on a one-dimensional periodic ring, we study the role of the spatial scale of resistive inhomogeneity on defibrillation.

For a rotating wave on a periodic ring there are three stable attractors, namely the uniform rest state, a wave traveling clockwise

and a wave traveling counterclockwise. As a result, the application of a stimulus has the potential for three different outcomes,

namely elimination of the wave, phase resetting of the wave, and reversal of the wave.

The results presented here show that with resistive inhomogeneities of large spatial scale, all three of these transitions are possible

with large amplitude shocks, so that the probability of defibrillation is bounded well below one, independent of stimulus amplitude.

On the other hand, resistive inhomogeneities of small spatial scale produce a defibrillation threshold that is qualitatively consistent

with that found experimentally, namely the probability of defibrillation success is an increasing function that approaches one for

large enough stimulus amplitude.

Extending these results to higher dimensions, we describe conditions for successful defibrillation of functional reentry with large

scale spatial inhomogeneity, but find that elimination of anatomical reentry is quite difficult. With small spatial scale inhomogeneity,

there are no similar restrictions.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fibrillation is generally thought to be a highly
disorganized pattern of electrical activation of the heart
consisting of many small reentrant ‘‘spirals’’ that are
continually created and destroyed (Gray et al., 1995;
Panfilov, 1998, 1999; Choi et al., 2002). Ventricular
fibrillation is usually self-sustained and unless there is a
successful intervention, death is certain. Atrial fibrilla-
tion is a similar condition that occurs on the atria but
which is not fatal. In both situations, however, it is
highly desirable to eliminate the reentrant behavior and
restore the normal pattern of activation.

Defibrillation with a large current shock is the process
by which fibrillation is usually eliminated. In the typical
situation, two conducting pads are placed on the chest
(or in the case of open heart surgery or with implantable
defibrillators, directly to the surface of the heart) and a
short ð10 msÞ discharge of current is triggered. When
applied to the body surface, the energy is of the order of
150 J; which explains why this is called a shock. For
implantable defibrillators, the required energy is on the
order of 15–20 J; which is still considerable.
When it works, a defibrillating shock eliminates the

reentrant activity and the heart approaches its rest state,
awaiting normal activation. When it fails, the reentrant
activity is temporarily disturbed, but spontaneously
returns (Ideker et al., 1991).
While the defibrillation threshold (DFT) is described

as a threshold, this is not precisely correct. Rather, the
DFT is defined as the shock strength at which 50% of
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the attempts are successful at eliminating fibrillation.
At higher shock strengths, however, the probability of
success increases. For example, the enhanced DFT
(DFT++) is 90% effective and for implantable
defibrillators the probability of success rises to approxi-
mately 99% with an additional increase of 4–6 J (Gold
et al., 2002).
The theory to explain the mechanism of defibrillation

is not completely resolved. According to the ‘‘critical
mass hypothesis’’, a sufficiently large portion of the
tissue must receive a stimulus of sufficient strength for
defibrillation to succeed. For example, an oft-mentioned
criterion is that 90% of the tissue must have an
extracellular field strength of at least 5 V=cm: This
criterion does not explain the mechanism of defibrilla-
tion since it is not extracellular current, but the
distribution of transmembrane current, that is respon-
sible for stimulating cell membrane.
As we discuss below, inhomogeneities of resistance

are necessary to drive transmembrane current, and
homogeneous ventricles could not be defibrillated.
Fortunately for us, there is no such thing as a resistively
homogeneous heart, as there are numerous sources of
inhomogeneities of resistance. For example, at the
cellular level, cells are connected by gap junctions and
surrounded by extracellular space that contains capil-
laries, collagen fiber, connective tissue, etc. all of which
contribute inhomogeneity of conductance. In addition,
myocytes are assembled in distinct layers, with extensive
clefts between these layers (Caulfield and Borg, 1979;
Robinson et al., 1983). At a larger space scale, cells are
organized into fibers, there is fiber branching and
tapering, and the fiber orientation changes both in the
longitudinal and in the transverse directions.
The question that arises is which, if any, of these

inhomogeneities is primarily responsible for the success
of defibrillation. The answer that we have favored is
small-scale spatial inhomogeneities, and this hypo-
thesis has been explored in several previous papers
(Fishler, 1998; Fishler and Vepa, 1998; Keener, 1996,
1998; Keener and Lewis, 1999; Keener and Panfilov,
1996; Krinsky and Pumir, 1998). Because the largest
contribution to small scale inhomogeneities was thought
to be gap junctional resistance, and because gap
junctional resistance should lead to ‘‘sawtooth’’ profiles
of transmembrane potential, this hypothesis is some-
times referred to as the sawtooth hypothesis (Krassows-
ka et al., 1987, 1990). At present, the sawtooth
hypothesis is not accepted by many workers in the
field, largely because of experimental data suggesting
that the amplitude of the sawtooth is too small to be the
source of defibrillating stimuli (Gillis et al., 1996; Zhou
et al., 1998). However, a new proposal that deserves
consideration is that interlaminal clefts provide an
adequate small scale resistive inhomogeneity (Hooks
et al., 2002).

The alternate hypothesis is that large spatial scale
inhomogeneities are primarily responsible for defibrilla-
tion success. There is no difficulty whatever to see the
effects of large scale inhomogeneities of resistance in
experiments (Fast et al., 1998; White et al., 1998). In
fact, regions of membrane depolarization and hyperpo-
larization are easily seen and are referred to as virtual
anodes and cathodes, virtual because they may occur
at large distances from the stimulating electrode
(Wikswo et al., 1994, 1995; Efimov et al., 2000a, b;
Knisely et al., 1994).
The purpose of this paper is to describe the

mechanism by which each of these sources of inhomo-
geneity lead to successful defibrillation and to describe
the conditions for their success. We find that with large
scale spatial inhomogeneity, defibrillation succeeds for
functional reentry only if the virtual electrodes nearly
cover the domain, and rarely succeeds in eliminating
anatomical reentry. There are no similar restrictions for
small scale inhomogeneities.
The outline of this paper is as follows. In the next

section we describe a model that can be used to study the
effect of externally applied stimuli. In the following
section we describe the different dynamical responses
that result from stimuli of different amplitude and
phase, and different scale inhomogeneity on a one-
dimensional ring. Then, we discuss the implications of
these observations for higher dimensional tissue, con-
cluding that small spatial scale inhomogeneity can
account for much of the experimental data.

2. Modeling defibrillation

Models of cardiac activity typically combine two
ingredients, a model of cellular behavior with a model of
spatial coupling. For this paper we use simple models of
cellular behavior, and couple them with the bidomain
model for cardiac tissue. For an understanding of how
externally applied currents affect cardiac tissue, we
begin with the bidomain description of cardiac tissue
(Henriquez, 1993; Keener and Sneyd, 1998; Neu and
Krassowska, 1993). For the usual bidomain model,
cardiac tissue is assumed to be a two-phase medium,
with comingled intracellular and extracellular domains.
At each point of the cardiac domain, denoted G; there
are potentials fe and fi; the extracellular and intracel-
lular potentials, respectively, and the transmembrane
potential, v ¼ fi � fe: These potentials drive currents,

ie ¼ �serfe; ii ¼ �sirfi; ð1Þ

and a transmembrane current across the cell membrane
dividing the two (comingled) regions. The conductivities
of the two media are represented by the conductivity
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tensors, si and se: Kirchhoff’s laws imply that

w Cm

@v

@t
þ Iion

� �
¼ r � ðsirfiÞ; ð2Þ

r � ðsirfi þ serfeÞ ¼ 0: ð3Þ

The first of these equations implies that current can
leave the intracellular space only as a transmembrane
current, and that the transmembrane current has two
components, namely the capacitive current and the ionic
current Iion: The second equation states that the
intracellular and extracellular currents can be redis-
tributed but charge is conserved (there are no intracar-
diac current sources). In Eq. (2), Cm is the membrane
capacitance, and w is the ratio of cell surface to total
volume.
The boundary conditions for the bidomain model

are that current flows only across the boundary of the
extracellular space, while there is no current across the
boundary of the intracellular space,

n � ðserfeÞ ¼ IðtÞ fI ðxÞ; n � ðsirfiÞ ¼ 0; on @G; ð4Þ

where n is the outward normal unit vector to the
boundary @G: It is also required that the total injected
current be zero,Z
@G

fI ðxÞ dx ¼ 0: ð5Þ

It should be noted that while the bidomain model is
adequate for the case of large-scale inhomogeneities, it is
not appropriate for small-scale inhomogeneities, since
the bidomain model is derived using a homogenization
argument in which small scale spatial inhomogeneities
are smoothed or averaged out. Thus, inclusion of small
scale inhomogeneity requires a different model (Keener
and Panfilov, 1996).
We can get some idea of the behavior of this model by

examining the case of a one dimensional cable. In this
case, the current conservation equation (3) can be
integrated once to obtain (with j fI j ¼ 1)

si

@fi

@x
þ se

@fe

@x
¼ IðtÞ; ð6Þ

and we learn that

si

@fi

@x
¼

si

si þ se

se

@v

@x
þ IðtÞ

� �
; ð7Þ

so that Eq. (2) for the transmembrane potential becomes

w Cm
@v

@t
þ Iion

� �
¼

@

@x
s
@v

@x
þ

si

si þ se

IðtÞ
� �

; ð8Þ

where

s ¼
sise

si þ se

; ð9Þ

with boundary condition

@v

@x
¼ �

I

se

at x ¼ 0;L; ð10Þ

where L is the length of the cable.
It is easy to see that the response of the transmem-

brane potential to current stimuli is different for a
homogeneous or inhomogeneous cable. For a homo-
geneous cable, the current source has influence only at
the boundary, and the interior source term

@

@x

si

si þ se

IðtÞ
� �

ð11Þ

is identically zero. In a simple (unphysiological) situa-
tion in which the ionic current is linear Iion ¼ v=Rm and
there is a steady applied current I ; the steady solution is

vðxÞ ¼ �
I

se

sinhððx � L=2Þ=LÞ
coshðL=2LÞ

; ð12Þ

where L2 ¼ Rms=w: For a domain that is large compared
to the space constant L; this solution exhibits exponen-
tial decay away from each boundary, and is essentially
zero in the interior of the domain. This corresponds to
the well known fact that the response to a stimulus is
depolarization close to one boundary and hyperpolar-
ization close to the opposite boundary, with little effect
in the interior of the domain. Thus, without resistive
inhomogeneity, there is effectively no transmembrane
current generated by the stimulus in the interior of the
tissue (several space constants from the stimulus source).
On the other hand, if si=ðsi þ seÞ is not constant

(there is resistive inhomogeneity), the inhomogeneity
provides additional sources and sinks of transmembrane
current at points throughout the interior of the medium.
It is the distribution of these sources and sinks that is
responsible for defibrillation.
To get some insight into how this works in higher

dimensions, we calculate that

r � ðsirfiÞ � r � ðsiðsi þ seÞ
�1servÞ

¼ r � ðsirv þ sirfeÞ � r � ðsiðsi þ seÞ
�1servÞ

¼ r � ðsiðsi þ seÞ
�1sirv þ sirfeÞ

¼ r � siðsi þ seÞ
�1ðsirv þ ðsi þ seÞrfeÞ

¼ r � ðsiðsi þ seÞ
�1ItÞ;

where It is the total current, It ¼ sirv þ ðsi þ seÞrfe:
Eq. (2) becomes

w Cm

@v

@t
þ Iion

� �
¼r � ðsiðsi þ seÞ

�1servÞ

þ r � ðsiðsi þ seÞ
�1ItÞ: ð13Þ

From this we see that if siðsi þ seÞ
�1 is inhomoge-

neous in space, then when It is non-zero, there are
sources and sinks of transmembrane current in the
interior of the tissue. It should be noted that if siðsi þ
seÞ

�1 is proportional to the identity matrix, there are no
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virtual anodes and cathodes, and defibrillation is
impossible. However, this occurs only if si ¼ cse (equal
anisotropy ratios), and it is well known that this does
not hold for cardiac tissue.
There is no question that these source terms exist. In

fact, virtual electrodes have been found to be induced by
unequal anisotropy of intracellular and extracellular
spaces (Sepulveda and Wikswo, 1987) myofiber curva-
ture (Trayanova and Skouibine, 1998), fiber narrowing
(Sobie et al., 1997), spatial inhomogeneity of intracel-
lular volume fraction (Trayanova, 1999), discontinuity
associated with gap junctions, and intercellular clefts
(Fast et al., 1998). The primary issue of concern in this
paper is how different spatial distributions of sources
and sinks affects the outcome of a defibrillatory shock.
For much of the discussion that follows, to describe

the ionic dynamics, we will use a two variable model of
FitzHugh–Nagumo type (Keener and Sneyd, 1998). A
useful (but not physiological) specific example of these
takes the form

Iion ¼ �f ðvÞ þ aw;
@w

@t
¼ eðv � gwÞ; ð14Þ

where f ðvÞ ¼ Avð1� vÞðv � aÞ; with a ¼ a ¼ 0:1; e ¼
0:01; A ¼ 1; and g ¼ 1

3
: In this model, the rest potential

v ¼ 0 corresponds to the polarized membrane state. A
positive stimulus, leading to an increase of v is a
depolarizing stimulus, and a negative stimulus, leading
to a decrease of v is a hyperpolarizing stimulus.
From time to time we will refer to more detailed ionic

models such as the Beeler–Reuter model (Beeler and
Reuter, 1977). However, since the phenomena we wish
to explore are more readily described using two variable
caricatures, much of our discussion will focus on
FitzHugh–Nagumo kinetics.
Two variable models have the advantage that they

can be viewed in the phase plane. For example, in Fig. 1
is shown a typical periodic traveling wave solution on a
ring, moving from right to left. The upper panel shows
the variables v and w plotted as functions of x for fixed t;
while the lower panel shows the phase plane projection
of these same trajectories. In the lower panel, the dashed
curves are the v and w nullclines, found by setting Iion ¼
0 (the v nullcline, cubic shaped) and dw=dt ¼ 0 (the w

nullcline, a monotone increasing function of v).
In the phase plane, sharp transitions are seen as curve

segments that connect the left and right branches of the
cubic nullcline while keeping w relatively unchanged.
These transitions are identified as fronts or backs if their
wavespeed is positive (for fronts) or negative (for backs)
(Keener and Sneyd, 1998). The wavespeed is defined as
that number c for which there is a monotone increasing,
heteroclinic trajectory of the equation

d2v

dx2
� c

dv

dx
� Iion ¼ 0 ð15Þ

connecting the smallest zero of Iion; say v�; with its
largest zero vþ; with w fixed. It is easy to show that the
sign of c is the opposite of the sign of

Z vþ

v�

Iion dv: ð16Þ

As a result, there is a value of w; called the zero speed
level, at which c ¼ 0: For the cubic FHN dynamics, the
zero speed level is w0 ¼ 2

27
ða2 � aþ 1Þ3=2: A transition

with w below w0 has positive speed and is therefore a
front, while a transition above this level has negative
speed and is a back.

3. Defibrillation of a ring

Since fibrillation is a state in which there are one or
many reentrant waves, the goal of defibrillation is to
eliminate all of these reentrant waves, regardless of their
structure or location, allowing the tissue to return to
rest, awaiting the next normal action potential. From
a dynamical systems point of view, the goal of a
defibrillatory shock is to change the state of the system
by moving it to the attracting basin of the rest state. We
need, therefore, to understand something about basins
of attraction for the variety of possible behaviors, and
how to move the system from one basin to another.
Since most of the fundamental ideas can be under-

stood for a one-dimensional ring, in this section we
focus on this simplified geometry. For a one-dimen-
sional ring, reentrant activity corresponds to a wave (or
waves) rotating around the ring. For a ring, there is a
limit on the number of stable attractors, and the number
of such attractors is always odd. This includes waves
with one or more action potentials moving in the
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shown as the solid curve, and w shown as dashed, in the upper panel.

In the lower panel is the v–w phase plane trajectory of this same

solution, with the v and w nullclines shown as dashed curves. Arrows in

the phase plane indicate the direction of increasing x:
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clockwise direction, an equal number moving in the
counterclockwise, as well as the uniform rest state.
For two-variable models, these different states can be

distinguished by a topological criterion, as follows. At
any point in time, plot the solution as a curve in phase
space, parameterized by space (as in Fig. 1). Because the
spatial domain is a ring, hence periodic, the solution
curve in phase space is always a closed curve.
The zero speed level, described above, can be used to

define a winding number for trajectories. Consider a thin
ellipse, with major axis along the zero speed level and
centered at the middle zero of f ðvÞ (see Fig. 2). For this
discussion, the precise size of the ellipse is not
significant, so long as typical periodic traveling waves
surround it. Points that lie inside this ellipse correspond
to the core of spirals in two spatial dimensions, and are
regarded as ‘‘phaseless points’’ (Winfree, 1983, 1997).
For curves that do not intersect this ellipse, the winding
number is defined as the integer number of times the
curve wraps around this ellipse, positive if moving in
space from left to right gives clockwise rotation about
the ellipse, and negative if counterclockwise. If the
number of windings around the ellipse is zero, the
winding number is zero. For example, in Fig. 1 where
there is a single periodic wave moving from right to left,
the rotation in the phase portrait is counterclockwise,
hence the winding number is �1:
In the limit that e is small, the winding number is an

invariant of the flow for dynamics (14) for all
trajectories with an appropriate restriction on the size
of j@w=@xj: A restriction on j@w=@xj is necessary in order
to make sure that each wrap around the ellipse takes up
a sufficient amount of space x (Cytrynbaum, 2001).
It would be nice if this winding number were an

invariant of the flow for all dynamics of FHN type, but
it is not. It is easy to find dynamics where a wave on a
periodic ring (with winding number 71) is unstable but
persists for quite some time before collapsing into the
rest state. However, the collapse can be identified as a
transition in which the winding number changes from
71 to zero.

Even though the winding number is not an invariant,
it gives a useful characterization of the behavior of
waves because it gives criteria for transitions between
different states. For example, it is easily understood that
it is impossible to create a single rotating wave using an
S1–S2 stimulus protocol with the two stimuli applied at
the same point on the ring, since the winding number
can never thereby (because of symmetry) be anything
other than zero.
Similarly, to create a single traveling wave with an

S1–S2 stimulus with the stimuli applied at different
places requires the correct timing to turn a double cover
of a single curve (the result of the S1) into a single loop
with winding number 71: In Figs. 3 and 4 are shown
snapshots of this sequence of events. In Fig. 3 are shown
two action potentials propagating outward that were
initiated following a stimulus that was applied at the
center of the spatial domain at time t ¼ 0: The phase
portrait for this trajectory is a double cover of a single
curve. In Fig. 4 is shown the result at the end of the S2
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stimulus that was applied slightly left of center. The
phase portrait for this trajectory shows that what was
before a double cover of a single curve has now been
split into a loop with winding number 1. After the S2
stimulus is ended this profile quickly evolves into a
periodic traveling wave moving from left to right.
(A similar winding number can be defined for general

ionic models by plotting vðx; tÞ against vðx; t � tÞ for
some fixed delay t along some closed curve in space.) We
use the winding number to assess the long-term behavior
of trajectories following a brief shock. That is,
trajectories with winding numbers 71 converge to a
traveling wave profile, while those with winding number
zero converge to the uniform rest state.
Suppose the ring size is such that it allows only

winding numbers of �1; 0 and 1. That is, the only stable
attractors are the rest state and left or right moving
periodic traveling waves. A time-dependent perturba-
tion to one of these can have one of three outcomes. It
could change the winding number or keep it the same.
Specifically, if we start with a left moving travelling
wave, a time dependent perturbation could change it so
that it returns to rest, or that the wave reverses direction,
or the wave could remain the same, with only a phase
shift. These are the only possibilities.
It is clear how each of these transitions can be

effected. To turn a winding number71 trajectory into a
winding number 0 trajectory it is sufficient to apply a
depolarizing stimulus at a place where the dynamics are
partially recovered in such a way that a portion of the
phase plane curve is moved from left to right so that it
no longer surrounds the defining ellipse (see Fig. 5).
Similarly, it is sufficient to apply a hyperpolarizing
stimulus at a place where the dynamics are excited in
such a way that a portion of the phase plane curve is
moved from right to left so that it also fails to surround
the ellipse (see Fig. 6). Of course, if both of these events
occur at the same time then the winding number changes
sign, leading to a reversal of the direction of travel of the
wave.

Each of these has three subcases which have slightly
different physical descriptions. For example, with a
depolarizing stimulus applied to the partially refractory
tail, the stimulus might create a new front and a
new back (Fig. 5), it might convert a front into a back
(Fig. 7), or it might convert a back into a front (Fig. 8).
To demonstrate that each of these transitions is

possible, and to explore the effect of inhomogeneities of
resistance of different spatial scale, we simulated Eq. (8)
on a one-dimensional periodic ring, using FitzHugh–
Nagumo kinetics (14). The conductivities were taken
to be

si ¼ 0:01 1þ
1

2
sin

2pðOx þ fÞ
L

� �
; se ¼ 0:01: ð17Þ

The length of the ring was L ¼ 10; which was large
enough to support a single stable periodic traveling
wave. The spatial grid size was Dx ¼ 0:05; and the time
step was Dt ¼ 3; using the Crank–Nicholson method.
Initially, at time t ¼ 0; there was a periodic traveling
wave (winding number �1), as shown in Fig. 1. At some
time during the evolution of this wave, a brief stimulus
was applied, simulated by setting IðtÞ to be some
nonzero constant for the short duration of 10 time
steps (30 time units). (This is short compared to the time
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Fig. 5. A depolarizing stimulus applied in the partially refractory tail

may produce winding number zero by creating a new wavefront and

new waveback.

Fig. 6. A hyperpolarizing stimulus applied in the excited region may

produce winding number zero by creating a new wavefront and new

waveback.

Fig. 7. A depolarizing stimulus applied in the recovered region may

produce winding number zero by converting a wavefront into a

waveback.
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constant of the variable w; tw ¼ ðgeÞ�1 ¼ 300 time units.)
Notice that the effect of IðtÞ at various points on the ring
is determined by the inhomogeneity of si and se in the
source term (11).
By large scale we mean an inhomogeneity whose

characteristic length scale is larger than the size of the
critical domain, which for this model is about 1 space
unit. For this simulation, we chose O ¼ 1 to represent
a large scale inhomogeneity. With large spatial scale
inhomogeneity, the results are essentially as described
above, with the important restriction that depolarizing
current and hyperpolarizing current must always be in
balance.
Beginning in Fig. 9 is shown the sequence of events

leading to successful defibrillation. At time t ¼ 15; the
effects of the stimulus are depolarizing ahead of the
wavefront, and hyperpolarizing at the waveback.
The trajectory is on its way to becoming like Fig. 7

with winding number zero. After the stimulus is
removed, when the wave is reestablished, there are two
wavebacks moving toward each other, which eventually
collide causing the wave to collapse, leaving the medium
at rest. This is shown in Fig. 10 for time t ¼ 105:
This stimulus was successful because the depolarizing

stimulus was of sufficient amplitude and was properly
located so that the wavefront was converted to a
waveback. The opposite also occurs (but is not shown),
namely a properly located hyperpolarizing stimulus of
sufficient amplitude can convert a waveback into a
wavefront. Thus, successful defibrillation with O ¼ 1
occurs if the depolarizing stimulus is properly timed and
of sufficient amplitude or if the hyperpolarizing stimulus
is properly timed and of sufficient amplitude.
If neither of these occur, the traveling wave is

reestablished with a phase shift. However, if both of
these occur, the wave is not only reestablished, but its
direction of propagation is reversed, traveling in the
opposite direction from the original.
That this last possibility occurs for FHN dynamics is

demonstrated by the following figures. In Fig. 11 is
shown the solution during the stimulus (at t ¼ 6) that

will eventually rotate in the opposite direction. Notice
that the depolarization is ahead of the wavefront and the
hyperpolarization is slightly ahead of the waveback. It is
apparent from the phase portrait that this stimulus has
the potential of changing the sign of the winding number
(from �1 to þ1), and indeed this is the case.
After the stimulus is removed, the wave that is

reestablished, shown in Fig. 12 is rotating in the
opposite direction.
These simulations demonstrate that with a low spatial

frequency inhomogeneity, defibrillation in one spatial
dimension is not a true threshold phenomenon, because
it depends crucially on the timing of the stimulus.
Increasing the amplitude of a poorly timed stimulus
cannot increase the likelihood of defibrillation. Only if
it is properly timed is the amplitude of the stimulus
significant.
This phase–amplitude dependence for large scale

inhomogeneities is depicted in Fig. 13. Shown here are
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Fig. 8. A depolarizing stimulus applied in the refractory region may

produce winding number zero by converting a waveback into a

wavefront.
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the three regions in which there is defibrillation success,
phase resetting and propagation reversal, in the case
that O ¼ 1: The region with defibrillation success has
two components, one in which fronts are converted to
backs via hyperpolarization and one in which backs are
converted to fronts via depolarization. The region with
defibrillation success is quite small, with the probability
of success less than 20%.
Similar results to these were found using the Beeler–

Reuter ionic model. With this full ionic model it is
possible to eliminate a rotating wave by application of a
depolarizing stimulus behind the tail of the action
potential or by applying a hyperpolarizing stimulus near
the front of the action potential. The effect of the
depolarizing stimulus is to effectively turn a back into a
front, as depicted by Fig. 8, even though these are not
two-variable dynamics to which this concept of winding
number can be applied. The effect of the hyperpolarizing
stimulus is to turn a front into a back. In our
simulations, however, the hyperpolarizing current re-
quired to reverse a front was significantly larger than the

depolarizing current required to activate a back. This is
readily explained by the fact that to hyperpolarize a cell
during its upstroke requires sufficient hyperpolarizing
current to overwhelm the inward sodium current. This
current requirement is far larger than the amount of
depolarizing current required to excite a partially
recovered cell.
With small scale spatial inhomogeneities the results

are substantially different. With small scale inhomo-
geneity, the locations of hyperpolarization and depolar-
ization are closely spaced, and it is not as easy to predict
the result of the stimulus, as it is with large scale
inhomogeneities.
To illustrate the differences, numerical simulations

were performed, this time with O ¼ 10; so that the
period of the inhomogeneity was 1

10
th that of the ring.

In Fig. 14, the solution is shown midway through the
stimulus. The effects of the inhomogeneity are clearly
seen as sites of depolarization and hyperpolarization,
however, from this figure it is not possible to predict the
outcome of the stimulus. One noticeable feature is that
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Fig. 12. Solution (with O ¼ 1) at t ¼ 285 after the stimulus is removed

that is rotating in the opposite direction (from left to right).
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even though the amplitude of the depolarizing and
hyperpolarizing currents is everywhere the same, the
effect of these on the potential depends strongly upon
where in the phase of the action potential the stimulus is
applied.
After the stimulus is removed, the wavelike behavior

is reestablished, although it is some time before the final
outcome is evident. In Fig. 15, the solution is shown
some time after the stimulus has terminated (at t ¼ 165).
By this time it is evident from the phase portrait that the
winding number is zero, and the wave consists of two
wavebacks which are traveling in opposite directions
and, because the ring is periodic, will shortly coalesce
and collapse, allowing the medium to return to rest. In
other words, the shock was successful at terminating the
rotating wave.
The most significant observation is that this result is

practically independent of timing.
If the stimulus amplitude is reduced slightly ðI ¼

0:0030Þ the outcome is dramatically different. In this
case, the early evolution is indistinguishable from that
shown in Fig. 14, however, the later evolution diverges
from the previous case. In Fig. 16 is shown the wave
at t ¼ 165: Here it is evident from the phase portrait
that there is a wave front and a wave back with
winding number �1; so that a rotating wave is
reestablished. The phase of the wave has merely been
reset.
From numerical simulations we conclude that while

the mechanism of defibrillation is the same, namely the
stimulus had the effect of turning a winding number 71
wave into a winding number zero wave, there is
a significant difference in that the result is independent
of timing, and some of the conversions seen with large
scale inhomogeneity are not possible with small scale
inhomogeneity.

The natural question is to ask why these are different.
A clue to understanding this difference is provided by

recent experimental studies of single cells stimulated by
an applied electric field (Sharma and Tung, 2002). In
this study the transmembrane potential was measured
(using voltage sensitive fluorescent dyes) at five sites
along the length of a single cell before, during, and after
the application of two successive stimuli applied to the
extracellular bath. The first stimulus was adequate to
excite the resting cell, and the second stimulus was
applied 20 ms after the first, during the excited phase of
the action potential.
The results of these experiments are simulated in

Fig. 17. The upper panel in this figure is remarkably
similar to those in Sharma and Tung (2002) even though
this figure was produced from a numerical simulation
with the FHN model. For this simulation, a current was
applied to the extracellular medium, and the length of
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Fig. 15. Solution (with O ¼ 10) at t ¼ 165 after the superthreshold

stimulus ðI ¼ 0:0031Þ was removed and slightly before the wave

collapses and the medium returns to rest.
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the cell was taken to be 1
6
th the space constant of the

intact cellular medium. We used the FHN dynamics (14)
with parameter values e ¼ 0:1; a ¼ 0:05; g ¼ 2:7; and
A ¼ 50; and numerical integration used the Crank–
Nicholson method. The S1 stimulus was 0.3 time units
duration and the S2 had 0.5 time units duration, and
were both of amplitude I ¼ 4: The upper panel in
Fig. 17 shows five traces of voltage potential from five
evenly spaced locations along the cell (at x ¼ 0; 0:25;
0:5; 0:75; 1:0). When there is an applied current, one end
of the cell is depolarized relative to the opposite end
which is hyperpolarized, but when the current is
removed, the membrane potential quickly becomes
homogeneous throughout the cell. The lower panel
shows the phase plane trajectory for the two ends of
the cell.
The noticeable feature of this figure is that the effect

of the stimulus is different depending on when during
the action potential it is applied. If applied when the cell
is recovering or at rest, the net effect is strong
depolarization, while if the cell is excited, the net effect
is slight hyperpolarization. For these dynamics, the net
depolarization increased as the cell is more recovered,
and the net hyperpolarization increased as the stimulus
was applied later during the excited phase.
The analysis to understand what determines the net

effect has been given previously in several places, for
example, (Krassowska and Neu, 1994; Pumir and
Krinsky, 1997). The conclusion of that analysis is that
if the applied stimulus is short compared to the time
constants of all slow gating variables, then the potential
is well approximated by

vðy; tÞ ¼
IðtÞ
se

y �
L

2

� �
þ fðtÞ þ OðeÞ; ð18Þ

on the interval 0oyoL; where fðtÞ is the cell-averaged
membrane potential, whose dynamics satisfy

Cm

df
dt

¼ �
Z 1

0

Iion

LIðtÞ
se

x �
1

2

� �
þ f

� �
dx; ð19Þ

holding all slow gating variables fixed. Here, e ¼ ðL=LÞ2;
where L is the length of the cell, and L is the length
constant.
It follows from Eq. (19) that the effect of the stimulus

is strongest for those potentials where Iion is most
strongly nonlinear, and if Iion is linear in v; then the
stimulus has no effect. This explains why the effect of
the stimulus is so strong and depolarizing on a resting
cell, but is much smaller on a cell that is excited. For a
resting cell, the sodium current is available and the result
of depolarizing one end of the cell far outweighs the
effect of hyperpolarizing the opposite end, so that the
net effect is overall depolarization. In contrast, during
the excited phase the primary current is an outward
potassium current, which on this time scale is linear in v;

so that depolarization at one end of the cell and
hyperpolarization at the opposite have nearly cancelling
effects. Observations of this nature form the basis of the
paper Pumir et al. (1998).
Of course, Eq. (19) is only a first-order approxima-

tion, ignoring slower time scale events. These effects can
be seen in the lower panel of Fig. 17, where the recovery
variable changes more rapidly at the depolarized end of
the cell than at the hyperpolarized end of the cell, so that
when the stimulus is removed, the recovery variable is
not uniform throughout the cell. The primary observa-
tion, however, is that the response to small spatial scale
inhomogeneity is a nonlinear average of depolarizing
and hyperpolarizing currents with the consequence that
for cardiac tissue the response is strongly depolarizing if
the tissue is partially or fully recovered, and the response
is weak otherwise. This difference in response is because
the inward sodium current is strongly nonlinear in v

while other currents are far less so. This argues that the
most significant current responsible for defibrillation is
the sodium current.
This analysis applies regardless of the source of

resistive inhomogeneity, as long as the spatial scale of
that inhomogeneity is small compared to the length
constant of the medium. Thus, even though this analysis
was initially done with gap junctions and sawtooth
potentials in mind, it applies equally well if the primary
resistive inhomogeneity is in the extracellular space or
results from other small-scale structures.

4. Defibrillation in higher dimensions

The mechanism for defibrillation that we proposed in
the previous section is that a stimulus, however it is
provided, must result in a winding number zero
trajectory after it has ended. In two or three spatial
dimensions, an analogous winding number cannot be
defined, so we retain the definition of winding number
used on a one-dimensional ring. That is, for any specific
non-intersecting closed curve in physical space whose
image in the phase plane does not intersect the
prescribed ellipse, the winding number is non-zero if
the total number of wraps around the ellipse is non-zero
as one traverses the simple closed curve, and zero
otherwise. (There is additional subtlety as to how to
correctly orient the curve in three dimensions, so for the
sake of simplicity, for the remainder of this discussion
we consider only two-dimensional regions of space.) In
two- or three-dimensional space, this winding number
may change as the defining curve is moved around.
However, we can determine when there is a reentrant
pattern as follows. Let Wc be the winding number
associated with a particular closed curve c; and let

W ¼ max
c

jWcj ð20Þ
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over all closed curves for which Wc is defined. If Wa0
there is a reentrant pattern of activity. Thus, defibrilla-
tion is successful if a short time after the stimulus is
terminated, W ¼ 0; while defibrillation is unsuccessful if
not.
Notice that this definition of W is non-local. If the

spatial domain contains no holes, we could use a local
property determined by the number and nature of
phaseless regions. However, defibrillation is not equiva-
lent to the elimination of all phaseless regions if the
domain contains one or more holes (e.g., a ring or
annulus).
The main lesson we learned in the previous section is

that to use depolarization to obtain winding number
zero, a depolarizing current of sufficient amplitude must
be applied to a particular region on the trajectory in the
recovery phase, illustrated by Fig. 5. Depolarization of
other parts of the action potential are of no consequence
to changing the winding number. The domain on the
phase portrait that requires depolarization to produce
winding number zero we identify as the critical domain.
(The critical domain is closely related to, but not exactly
the same as, the excitable gap.) There are analogous
hyperpolarization critical domains whose significance
will be described below.
If W is not zero, there are a number of regions in

space which map to the ellipse in phase space. These are
analogous to Winfree’s phaseless points (Winfree, 1983,
1997), and are identified as the core region of reentrant
activity. Any simple curve surrounding one of these
regions must necessarily intersect the critical domain. In
fact, critical domains are continuous in space and can
begin or end only at the preimage of phaseless ellipses or
at the domain boundary. If there is but a single spiral,
then there would be a single phaseless region with a
spiral shaped critical domain emanating outward from
it. A typical arrangement of critical domains is shown in
Fig. 18. In this figure the contours are those of the
potential v and the darkened regions are the critical
domains, numerically computed from a simulation of
the FHN model in a fibrillatory state. (The axes are in
non-dimensional space units and the length constant is
one space unit.)
A criterion for defibrillation is that all of the critical

domains be depolarized with sufficient amplitude,
and if defibrillation fails, it is because some portion of
a critical domain was not adequately depolarized. If a
new reentrant pattern is created, it is because some
preexisting critical domain was differentially depolar-
ized. In fact, if some portion of a critical regions
fails to be depolarized it is the ends of that region that
become the new centers of reentrant activity after the
stimulus has terminated (Efimov et al., 2000a, b;
Winfree, 1983).
The next issue to face is how the stimulus is generated.

If the stimulus is generated by a large scale spatial

inhomogeneity, then because charge is conserved, the
net transmembrane current from the stimulus is zero;
total depolarizing and hyperpolarizing currents must be
in exact balance. This means that the size of the region
that receives depolarizing current is roughly the same as
the size of the region that receives hyperpolarizing
current. Of course, the regions with sufficiently large
depolarizing current are smaller. Thus, the distribution
of virtual anodes and cathodes creates a tiling pattern of
depolarization and hyperpolarization. An example of
such a tiling is shown in Fig. 19.
Now, according to the criterion developed above,

defibrillation will be successful if the superthreshold
depolarization tiling completely covers the critical
regions. An example of this overlay is shown in Fig. 20.
For Fig. 20 defibrillation would not be successful. In

fact, the probability that the distribution of critical
regions fits entirely within the superthreshold depolar-
ization tiling is zero. Thus, with a typical depolarization
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Fig. 18. An example of the arrangement of critical domains for FHN

dynamics in a fibrillatory state. Critical domains end at phaseless
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tiling and a typical distribution of critical domains (such
as shown in Fig. 18), the probability of successful
defibrillation is zero, and it is not improved with an
increase in stimulus amplitude.
However, the complete picture requires consideration

of the complementary hyperpolarizing critical regions.
The hyperpolarization critical regions are connected to
depolarization critical at the core of a spiral and their
partial hyperpolarization leads to the creation of new
spiral cores. If defibrillation required the immediate
elimination of all spirals, defibrillation by this mechan-
ism would be impossible. However, spirals formed by
depolarization are typically paired with spirals formed
by hyperpolarization. If the total parity of the spirals
is zero, and if all the spiral pairs are sufficiently
close together, they will subsequently collapse (since
spiral pairs require a sufficient domain size to
maintain themselves). If all such spiral pairs collapse,
defibrillation is achieved. We believe this is the mechan-
ism by which defibrillation is achieved by Eason and
Trayanova (2002).
Since all the new spirals are formed on the boundaries

of the superthreshold virtual electrodes, this mechanism
requires that all of the space be closely packed with
superthreshold virtual electrodes. In this way, newly
formed spiral pairs are not too far apart and will
collapse, and all preexisting cores receive superthreshold
stimulus and are eliminated. It is also for this reason
that reentry with a ‘‘virtual core’’ (rotation around an
inexcitable hole) cannot be readily eliminated, unless a
superthreshold virtual electrode completely surrounds
the hole. If the virtual core is not surrounded by a
virtual electrode, then as with a one dimensional ring,
elimination of the reentrant wave is dependent on
timing.

The story is much different with small scale inhomo-
geneity. The physics of anodes and cathodes is exactly
the same, namely there is no net transmembrane current.
Thus, the area where there is depolarization is roughly
the same as the area where there is hyperpolarization.
The difference, however, is that because the spatial scale
of this pattern is small compared to the length scale of
the tissue, the effect of the stimulus is quickly smeared
out, or averaged, spatially. If there is no amplification of
these currents, (if the tissue is effectively linear i.e.,
passive) then this average effect is zero; the depolarizing
and hyperpolarizing currents cancel each other out for
no net effect. On the other hand, if the tissue is locally
active and excitable, so that it amplifies depolarizing
currents, and deamplifies hyperpolarizing currents, then
the net effect is always depolarization. Thus, with small
scale inhomogeneity the critical domain, because it is
partially recovered, always receives depolarizing stimu-
lus; there is no need to align the depolarizing virtual
electrode with the critical domain. The only concern is
whether the amplitude of the stimulus is sufficient to
excite the critical domain. Thus, spatial averaging has
the effect of eliminating the need for critical domains to
be precisely aligned with the regions of depolarization.
All critical domains are depolarized. The only variable is
the amplitude of the effective depolarization.
When a stimulus is applied to two- or three-

dimensional tissue, the distribution of total current is
not uniform, as it is in one dimension. The consequence
of this is that with a fixed stimulus amplitude, in some
regions of space the critical domain may receive
adequate stimulus, while in other regions of space the
critical domain may not be sufficiently excited. Thus, for
a fixed stimulus protocol and electrode placement, there
are regions of space that are superthreshold and regions
that are subthreshold. The probability of defibrillation is
the probability that no part of the critical domain lies
in the subthreshold region at the time the stimulus is
applied.
Notice one very important difference between small-

scale and large-scale inhomogeneity. With large-scale
inhomogeneity, the size of the superthreshold old
depolarizing region is highly unlikely to exceed 50%
and will generally be much smaller than that, whereas,
with small-scale inhomogeneity, the size of the super-
threshold region increases with the stimulus amplitude
and could cover the entire tissue region. In Keener and
Panfilov (1996), homogenization theory was used to
derive an estimate for the effective amplitude of the
stimulus from a more detailed tissue model. From their
analysis, it was shown that the amplitude of the effective
stimulus is related to several factors, written as

A ¼ IðtÞjKiðxÞ � ciðxÞ þ KeðxÞ � ceðxÞj: ð21Þ

Here IðtÞ is the stimulus amplitude, KiðxÞ and KeðxÞ
describe the spatial distribution of intracellular and
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extracellular current as determined by the large scale
tissue structure (the mean field) and electrode place-
ment, and ciðxÞ and ceðxÞ are vectors determined from
local features (the small scale structure) of the cellular
medium. We define yðxÞ to be a local tissue property
such that if

R
A dt > y; then the refractory tissue within

a critical domain at position x will receive adequate
stimulus to effect defibrillation locally. Thus, a stimulus
is globally superthreshold ifZ

Aðt;xÞ dt > wðxÞy; ð22Þ

for all x; where wðxÞ is the characteristic function of the
critical domain, zero outside the critical domain and one
inside. Since wðxÞ is continually changing during
fibrillation, the probability of defibrillation is the
probability that Eq. (22) holds on the entire tissue
domain at the time the stimulus is applied (i.e., for
a randomly chosen spatial distribution of critical
domains).
This criterion is actually too demanding for two

reasons. First, it is not necessary that all critical domains
be excited, but only that the size of any critical domains
that receive insufficient stimulus be small enough so that
new reentrant patterns cannot emerge from them.
Second, critical domains in the vicinity of tissue
boundaries need not be completely stimulated for the
same reason, since if they are close to a boundary they
are not capable of sustaining a reentrant pattern but will
spontaneously disappear.
With these caveats, we see that there are five features

that determine whether or not a stimulus will success-
fully defibrillate a piece of tissue. These are:

* the amplitude (and/or duration) of the stimulus IðtÞ;
* the distribution of current within the tissue specified

by KiðxÞ and KeðxÞ;
* the microstructure of the tissue specified by ciðxÞ and

ceðxÞ;
* the spatial distribution of the critical domain wðxÞ;

and
* the threshold of the critical domain yðxÞ:

It is presumably easiest to change the size of the
subthreshold region. In fact, increasing the stimulus
amplitude I has exactly this effect. Since the function
jKiðxÞ � ciðxÞ þ KeðxÞ � ceðxÞj is positive, increasing I has
the effect of decreasing the size of the region that is
subthreshold, thereby increasing the probability of
defibrillation success.
The functions KeðxÞ and KiðxÞ are modified by

electrode design and electrode placement. Clearly,
satisfying Eq. (22) is more difficult if these have large
spatial variations. Thus, one criterion for the design and
placement of electrodes is that the field produced be as
uniform as possible.

The functions ciðxÞ and ceðxÞ depend on the
amplitude of local resistive inhomogeneity. Indeed, this
theory predicts that if the amplitude of local resistive
inhomogeneity is increased, then the DFT will be
decreased. One way to increase local intracellular
resistive inhomogeneity is with the application of
heptanol, a gap junction decoupler, and this theory
therefore predicts that addition of heptanol should
decrease the DFT. Indeed, this is known to be true
experimentally (Qi et al., 2001). It is also predicted by
this theory that increased extracellular resistive inho-
mogeneity, such as might be caused by cell swelling,
should decrease the defibrillation threshold. According
to this theory, the DFT is also affected by the
orientation of the mean field (a vector) relative to the
resistive inhomogeneity (also a vector). Since the vector
dot product K � c is maximized when the vectors are
parallel, this theory predicts that the DFT is lowest if the
mean field is oriented to be parallel to the direction of
greatest resistive inhomogeneity.
The most significant determinant of defibrillation

success is the distribution of the critical domain wðxÞ
compared to the location of the subthreshold regions.
For example, in Fig. 20, the critical domain consists of 8
narrow strips of varying lengths. To get some under-
standing of the importance of this distribution, we
suppose that the critical domain consists of several
disjoint striplike components. We can model this in a
simple way with a one dimensional example. Suppose
the unit interval contains several ðkÞ subintervals of total
length B that receive subthreshold stimulus. Suppose
further that there are n critical regions with total length
A: For simplicity, we suppose that the n critical
subregions are all intervals of identical length A=n:
The probability of defibrillation success is the same as
the probability that when the critical intervals are
randomly distributed on the unit interval, there is no
overlap with the subthreshold regions of total length B:
We can calculate this probability for large enough n:

Since there are k distinct subthreshold regions, the area
of the region in which the midpoint of a critical interval
may fall without jeopardizing successful defibrillation is
1� B � kA=n; at least if n is large enough. This means
that the probability of defibrillation success is

PðsuccessÞ ¼ 1� B �
kA

n

� �n

; ð23Þ

a decreasing function of n: In other words, as the critical
domains become smaller and less organized but more
numerous, the probability of defibrillation success
decreases.
This argument is readily generalized to two dimen-

sional regions. Suppose that the subthreshold region has
total area fraction B; and suppose that there are n

critical domains that require superthreshold stimulus.
We suppose that the critical domains are chosen
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randomly and are characterized by a single size
parameter, say length l: The distribution of sizes is
given by some probability distribution function, say
pnðlÞ; with mean value A=n;Z

N

0

lpnðlÞ dl ¼
A

n
ð24Þ

so that the total length of critical domains is A; on
average. The probability that a critical domain of size l

can be placed entirely within the superthreshold region
is some function,

PðsuccessjlÞ ¼ F ðB; lÞ ð25Þ

a monotone decreasing function of l with F ðB; 0Þ ¼
1� Bo1: The probability that defibrillation of all n

excitable components will be successful is

PðsuccessÞ ¼
Z

N

0

F ðB; lÞpnðlÞ dl

� �n

: ð26Þ

Clearly,Z
N

0

F ðB; lÞpnðlÞ dlp
Z

N

0

F ðB; 0ÞpnðlÞ dl

¼ 1� Bo1; ð27Þ

so that

lim
n-N

PðsuccessÞ ¼ 0: ð28Þ

In other words, as the critical regions become smaller
and more disorganized, the probability of defibrillation
success decreases.
It is known that the defibrillation threshold is lower

within the first few cycles of ventricular fibrillation than
after 10 seconds of fibrillation (Gradaus et al., 2002),
and that the defibrillation threshold for monomorphic
tachycardia is lower than for fully developed fibrillation
(AMA Standards, 1986).
If fibrillation corresponds to multiple unstable rotat-

ing wavelets, and if fibrillation is initiated by the
degradation of one or two larger spirals, then this
experimental observation is consistent with the present
theory. This is because for spirals, the critical regions are
highly organized, however, as breakup occurs and the
spirals degrade into fully developed fibrillation, so also
the organization of the critical regions degrades,
although the total length of the critical domain remains
more or less the same. According to this theory, the
defibrillation threshold should be lower for mono-
morphic tachycardia or early fibrillation.
The final way that the success of defibrillation is

determined is by the threshold y: Recall that y is a
measure of how large a stimulus is required to
depolarize marginally recovered tissue. One would
expect that y could be modified by the presence of drugs.
Sotolol is a potassium channel blocker, specifically

blocking the delayed rectifier potassium channel, and as
a consequence is known to lengthen action potential

duration. According to this theory, a potassium channel
blocker should have little effect on the DFT since
potassium currents are effectively linear and not
responsive to small spatial scale hyperpolarization/
depolarization pairs. Indeed, it is known that sotolol
has no significant effect on the DFT (Ujhelyi et al.,
1999).
The story for sodium channel blockers is more

complicated. A sodium channel blocker has two effects
on the dynamics that are related to this theory. First,
with fewer sodium channels available, the action
potential upstroke and the speed of propagation are
slowed. This means that the critical domain, defined by
the zero wave speed, is shifted. In addition, with fewer
available sodium channels it would seem likely that the
threshold for depolarization of the critical region is
increased. This loose argument suggests that sodium
channel blockers should increase the DFT. Unfortu-
nately, we do not yet have solid evidence from a detailed
ionic model that this line of reasoning is correct.
Nonetheless, the experimental evidence is that sodium
channel blockers, such as lidocaine and mexiletine,
increase the DFT (Crystal et al., 2002; Ujhelyi et al.,
1999).

5. Discussion

These results can be described in terms of dynamical
systems theory. The system we examined has several
stable attractors, including the rest state and the
fibrillatory state in which there are several or many
reentrant patterns. Defibrillation can be viewed as the
attempt to move the system from one attractor, a
fibrillatory state, to another, the uniform rest state, by
application of a time dependent perturbation. However,
the form of the perturbation is not arbitrary, but is
constrained by the physics of cardiac tissue. Specifically,
the stimulus cannot be applied directly to interior points
of the tissue, but can be applied only at the tissue
boundary. The way this stimulus is translated into
transmembrane stimulus in the interior of the tissue is
related to its resistive inhomogeneity, among other
things.
We have shown here that the effect of stimuli on

reentrant patterns depends strongly on the spatial scale
of the inhomogeneity by which the stimulus is mediated.
When the inhomogeneity is of small spatial scale, and
the applied field is uniform, the effect of a stimulus is
uniform. In the limit that the spatial scale is zero, this
conclusion can be verified using homogenization theory
(Keener and Panfilov, 1996), and in this situation,
defibrillation is a true threshold phenomenon; defibrilla-
tion succeeds or fails depending solely on the amplitude
of the stimulus. If the applied field and tissue properties
are nonuniform (which is the physically realistic case),
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then the probability of defibrillation success is an
increasing function of stimulus amplitude. Failure to
defibrillate can be explained as a failure of some critical
domain to be adequately depolarized, leading to the
reestablishment of reentrant waves.
The small scale hypothesis produces a theory that

agrees with the experimental data in several ways. That
the defibrillation threshold should decrease with the
addition of heptanol, remain unchanged with applica-
tion of potassium channel blockers and increase with
addition of sodium channel blockers is consistent with
this theory. This theory also can be used to show that a
biphasic shock is more efficient than a monophasic
shock (Keener and Lewis, 1999).
With large spatial scale inhomogeneities, the mechan-

ism of defibrillation is quite different. Here, many new
spiral pairs are created and if they are close enough
together, they soon collapse, leaving the tissue free of
reentrant waves. Since spirals are formed on the
boundaries of superthreshold virtual electrodes, spiral
pairs will be close together if the superthreshold virtual
electrodes nearly cover all of space. It is also required
that the cores of preexisting spirals all lie inside a
superthreshold virtual electrode. A large domain that is
not covered by superthreshold virtual electrodes cannot
be defibrillated by this mechanism. Similarly, anatomi-
cal reentry is difficult to eliminate by this mechanism,
because, as with one-dimensional reentry, elimination of
anatomical reentry requires proper alignment with the
virtual electrodes. It is experimentally well established
that injection of a depolarizing current at the right place
at the right time can terminate a rotating wave on a ring,
but if the timing is not correct, the rotating wave is
merely reset to a different phase (Frame and Rhee, 1988;
Glass and Josephson, 1995). In our numerical simula-
tions of FHN dynamics, we also found that reversal of
direction was possible, with a properly timed stimulus.
As a consequence of this need for proper alignment, it

is quite difficult to eliminate anatomical reentry. Several
numerical studies have shown success at eliminating
functional reentry with large scale virtual electrodes for
a tissue size that was small enough to be covered by a
few virtual electrodes (Anderson et al., 2000; Efimov
et al., 2000a, b; Trayanova et al., 1998; Eason and
Trayanova, 2002). It is the prediction of the large scale
theory that if a spiral were to drift and become pinned
by an inexcitable anatomical obstacle, it would become
much more difficult to eliminate, unless the anatomical
obstacle were completely surrounded by a superthres-
hold virtual electrode.
The main uncertainty for the small scale theory

remains the physical source of small spatial scale
inhomogeneity. The effect of small scale resistive
inhomogeneity due to gap junctions is clearly seen in
single isolated cells, but less so in coupled pairs of cells
(Sharma and Tung, 2001). In intact tissue, sawtooth

potentials of the amplitude required of this theory have
not been seen (Zhou et al., 1998).
However, other sources of small scale resistive

inhomogeneity exist and may be more important than
gap junctions. For example, recent simulations (Hooks
et al., 2002) suggest that the interlaminal clefts between
tissue layers may be much more significant than
previously thought. The spatial scale of these clefts is
of the right order of magnitude for this theory to apply,
about six cell widths. Furthermore, most gap junction
connections occur as end-to-end couplers, so that lateral
resistive inhomogeneity may be more significant than
transverse. Other inhomogeneities such as fiber splitting
or tapering may play a role as well.
So we are left with an unexplained conundrum. The

small-scale hypothesis produces a theory which agrees
qualitatively with many of the experimental observa-
tions, but the fundamental hypothesis of the nature of
the tissue structure has not been verified. On the other
hand, the large-scale sources of resistive inhomogeneity
that are readily observed seems to work only for a
restricted class of reentrant patterns and domains.
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