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Abstract Fragments of fish melanophore cells can form and center aggregates of
pigment granules by dynein-motor-driven transport along a self-organized radial
array of microtubules (MTs). We present a quantitative model that describes pig-
ment aggregation and MT-aster self-organization and the subsequent centering of
both structures. The model is based on the observations that MTs are immobile
and treadmill, while dynein-motor-covered granules have the ability to nucleate
MTs. From assumptions based on experimental observations, we derive partial
integro-differential equations describing the coupled granule–MT interaction. We
use scaling arguments and perturbation theory to study the model in two limit-
ing cases. The model analysis explains the mechanism of aster self-organization as
a positive feedback loop between motor aggregation at the MT minus ends and
MT nucleation by motors. Furthermore, the centering mechanism is explained by
the spontaneous nucleation of MTs throughout the cytosol which acts as a volume
sensing tool. Numerical simulations lend additional support to the analysis. The
model sheds light on role of polymer dynamics and polymer–motor interactions in
cytoskeletal organization.
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1. Introduction

Many fish and amphibia are able to change skin color rapidly for camouflage or
to establish dominance. These changes are possible due to the transport of small
organelles, referred to here as pigment granules, within specialized cells called
melanophores. The change in color of these cells is derived from transport of the
granules to and from the cell center (Bray, 2002; Nascimento et al., 2003). When
the pigment is dispersed throughout the cytoplasm, it absorbs light, and the cell ap-
pears colored. When the granules aggregate at the center, most of the cytoplasm is
transparent to light, and the cell appears colorless.

Within each melanophore, thousands of pigment granules are transported dur-
ing these color changes. This movement relies on the association of the granules
with multiple molecular motors that are able to transduce the chemical energy
of ATP hydrolysis into mechanical force generation and movement (Bray, 2002).
These motors transport the granules along two kinds of linear polymers—actin
and microtubules (MTs) that are organized into a cytoskeleton meshwork that
determines cell shape and is required for movement (Bray, 2002). Both kinds of
polymers are polar, with so-called minus ends and plus ends displaying distinct
structure and kinetics. One important type of dynamic behavior, when the rates
of polymer subunit assembly onto the plus ends and disassembly from the minus
ends are equal, is called treadmilling. A treadmilling polymer translocates in space
in the direction of its plus end despite the fact that the subunits embedded in the
polymer remain fixed in space. The movement is rather due to the diffusion in the
cytoplasm of the subunits disassembling from the minus end and assembling onto
the plus end.

While actin polymers are short, disordered and responsible for the dispersion
of the granules, MTs are long and ordered into the radial array called a MT aster
(Kellogg et al., 1994), in which the minus ends are focussed at the cell center and
plus ends extend outward to the cell boundary (Fig. 1). This structure is crucial
for pigment aggregation at the cell center, because some of the motor molecules
coating the granules are cytoplasmic dynein motors which, when activated, glide
toward MT minus ends (Holzbaur and Vallee, 1994).

MT aster formation is normally attributed to the capacity of the specialized
organelles—centrosomes—to nucleate and stabilize the MT minus ends (Schiebel,
2000). The central position of the centrosome is actively maintained in living cells,
and recent work indicates that an important role in this centering is played by
forces generated by molecular motors and MT polymerization (Burakov et al.,
2003). However, remarkably, polar MT arrays can self-organize and center in the
absence of centrosomes (Verde et al., 1991; Nedelec et al., 1997). The model of
aster formation suggested in (Verde et al., 1991) is based on the ability of multi-
valent minus-end directed motor complexes to associate with two or more MTs
simultaneously and to stay attached to a MT upon reaching its minus end. The
model asserts that MT minus-end focusing is achieved by the simultaneous mo-
tor driven transport of each MT to the minus ends of the other MTs attached to
the same motor complex. Centering can be explained by the balance of length-
dependent MT buckling forces which is achieved when the focal point of the
MT aster is at the center (Nedelec et al., 1997; Tran et al., 2001). These studies



Bulletin of Mathematical Biology (2006) 68: 1053–1072 1055

Fig. 1 (A–D) Qualitative model of the granule aggregation, MT aster self-organization and cen-
tering. In the nascent fragment, initially (A) the granules are scattered throughout the fragment,
while MTs (shown with light minus and dark plus ends) are polarized. First, the motors transport
the granules toward a few minus ends, and the granule clusters nucleate MTs (1, 2, 3) the plus ends
of which grow and reach other clusters (B). These MTs serve as tracks to merge all clusters into
a single aggregate. This aggregate nucleate many MTs (4–8) that start to grow into a MT aster
(C). However, rare spontaneously nucleated MTs (9) shift the whole granule aggregate toward
the center of the fragment (D). (E–F) Experimental observation of the aggregate centering in the
nascent fragment. Within 1 min, the granule aggregate is formed near the edge of the fragment
cut off from the cell (E). In 10–15 min, the aggregate moves to the center of the fragment (F). The
spatial scale is on the order of tens of microns. Tissue cultures of black tetra melanophores were
prepared as described in (Rodionov et al., 1994). To prepare fragments, melanophore processes
were dissected with microneedles with a 0.1 µm tip diameter. Aggregation of granules in the frag-
ments was triggered with 0.5 µM adrenalin. Phase contrast images of fragments were obtained
using a Nikon TE300 microscope equipped with a Watek high-resolution video camera.
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Fig. 1 Continued

emphasized the role of the physical movement of MTs and active force generation
by MT elastic bending as opposed to the view of MTs as immobile tracks.

In this paper, we analyze experiments in the model system—microsurgically
produced cytoplasmic fragments of fish melanophores. This model system is sim-
ilar to an intact melanophore in every aspect except for the lack of a centrosome
and a pre-centered radial array of MTs but nonetheless, upon motor stimulation,
rapidly forms such an array along with an aggregate of pigment granules. These
experiments (Rodionov and Borisy, 1997; Vorobjev et al., 2001) demonstrated
that when dynein motors are activated in incubated fragments with uniformly
distributed pigment granules and a random disordered MT array, the MTs rapidly
rearrange into an aster with pigment granules and MT minus ends focussed at
the center and plus ends at the fragment boundary. Also, in nascent fragments
with uniformly distributed pigment granules but MTs pre-organized by the centro-
some of the mother cell, the granules rapidly aggregate to the edge of the fragment
where the minus ends are concentrated. The aggregate subsequently shifts to the
center of the fragment (Fig. 1E–F).

The experiments with melanophore fragments suggest a different model of
MT aster formation than the multivalent motor transport model (Verde et al.,
1991; Nedelec et al., 1997) because recent studies showed that MTs are not
transported through the cytoplasm (Vorobjev et al., 2001) but simply treadmill.
Therefore, melanophore fragments provide a simple and specialized experimental
system for studying a form of MT/motor self-organization that relies on the tradi-
tional view of MTs as immobile tracks. Previously, we (Cytrynbaum et al., 2004;
Malikov et al., 2005) and others (Maly and Borisy, 2002) introduced models of the
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self-organization and centering similar to the one considered here, but focussed
on numerical and computational, rather than on analytical treatment. In this pa-
per, we derive a modified mathematical model of the phenomenon and use scaling
arguments, perturbation theory and numerical analysis to obtain results that lend
further insight into the cell behavior. In the next section, we discuss assumptions
and derive the model equations. Then, we use scaling arguments and perturbation
theory to analyze the 1D model qualitatively in the limits when granule transport is
either faster (Section 3), or slower (Section 4) than MT dynamics. In Section 5, we
describe the numerical solutions of the 1D model equations. We report theoretical
and experimental results on centering in 2D fragments in Section 6 and conclude
with a discussion of the results and their biological implications in Section 7.

The influence of Lee Segel’s work on mathematical modeling in cell biology, in
particular on our modeling work reported here, is tremendous. Lee was one of the
pioneers applying mathematics to cell biology in his now classical work on bacterial
chemotaxis (Keller and Segel, 1971). He introduced the powerful idea of mathe-
matical instability as a quantitative criterium for the onset of aggregation (Keller
and Segel, 1970). He was one of the first researchers to recognize the role of non-
local mechanisms in biology and to adapt integro-differential equations for mathe-
matical modeling of these effects (Jager and Segel, 1992). Above all, Lee tirelessly
and successfully promoted the art of scaling, nondimensionalization, qualitative
and perturbation analysis of model equations (Segel, 1972; Lin and Segel, 1988),
was ahead of his time in emphasizing attention to experimental details, and set a
gold standard for research in mathematical biology.

2. Model assumptions and equations

Our model is based on the following properties of granules and MTs known from
experiment (Rodionov and Borisy, 1997; Vorobjev et al., 2001; Cytrynbaum et al.,
2004; Malikov et al., 2005):

1. MTs are straight and immotile.
2. MTs are nucleated both on pigment granules and in a spontaneous (granule-

independent) manner at random locations in the cytoplasm with constant rates,
with the majority nucleated on the granules.

3. Nascent MTs grow in random directions at a constant rate on the order of
0.1 µm/s by elongation at the plus ends, which stabilize when they reach the
cell cortex.

4. Minus ends of nascent MTs remain stable for tens of seconds to a few minutes.
5. After a minus end is destabilized, the MT shortens at the minus ends with con-

stant rate that is equal to the rate of plus-end growth.
6. Pigment granules are either detached from the MTs and static, or attached to

a MT and move to the its minus end with a constant velocity on the order of
1 µm/s. The detachment rate is constant, while the attachment rate is propor-
tional to local density of the MTs.

Qualitatively, the self-organization and centering phenomena can be explained
as follows (Fig. 1A–D). The granules aggregate to the minus ends of existent MTs
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and start to nucleate new MTs. The minus ends of these nascent MTs are sta-
ble for a while, so local mini-asters emerge. Then, when the plus ends of MTs
recently nucleated in one granule-cluster reach other neighboring clusters, gran-
ules from those neighboring clusters are “stolen” by the former cluster. This leads
to a merging of clusters, and eventually to the formation of a single granule ag-
gregate with a single associated aster. If this aggregate is closer to the edge of
the fragment than to its center, more spontaneously nucleated MTs would nu-
cleate on the side of the aggregate away from the nearest edge as the rate of
spontaneous MT nucleation per unit of cytoplasmic area is assumed to be con-
stant across the cytoplasm. This asymmetry of spontaneous MT nucleation leads
to a bias in the transport of pigment granules in the aggregate and directs their
movement away from the cut edge. When the aggregate reaches the center of
the fragment, the cytoplasmic area and thus the probability of MT nucleation
on all sides of the aggregate becomes equal, keeping the aggregate in the cen-
ter, equidistant from the cell margins. Note that there is a trade-off between the
rate of centering generated by this mechanism and the width of the aggregate;
more spontaneously nucleated MTs speed up centering but also counteract the
aggregating influence of granule-nucleated MTs by pulling aggregated granules
outward.

This explanation is supported by microscopy observations. In order to exam-
ine which quantitative features of motor and MT dynamics are essential for this
behavior, we translate the assumptions into equations and analyze them. For sim-
plicity, we introduce a one-dimensional system of equations which is applicable
to a narrow long fragment. We discuss the realistic two-dimensional situation in
Section 5.

We model the MTs and granules deterministically on the 1-D domain −L < x <

L. We assume that there are sufficiently many MTs and granules that it is appro-
priate to keep track of them in terms of local densities. The MTs can be separated
into two dynamic sub-populations characterized by opposite orientations. Each
population is described by the dynamic densities of the plus ends (pr,l(x)), static
minus ends (sr,l(x)) and shrinking minus ends (mr,l(x)). The index r (l) stands for
the right- (left-) oriented MTs, which have their minus ends to the right (left) of
their plus ends. This notation is chosen because the pigment granules slide to the
right (left) on right- (left-) oriented MTs. Another important characteristic of the
MTs is the density Nr,l(x) defined as the number of MTs (expressed as a density)
passing through the cross-section of the fragment at coordinate x. The granules
can be described by three densities—those gliding to the right (gr) and left (gl)
with speed vg on the right- and left-oriented MTs, respectively, and the density of
static granules (gs) dissociated from the MTs. The static granules associate with the
right- (left-)oriented MTs with rates proportional to the local polymer densities of
the respective fibers, kon Nr,l(x).

The equations governing the MT and granule dynamics are summarized by:

∂pr,l

∂t
= ±vp

∂pr,l

∂x
+ (δ0 + δ1g),

∂mr,l

∂t
= ±vp

∂mr,l

∂x
+ #sr,l,

∂sr,l

∂t
= (δ0 + δ1g) − #sr,l, g = gr + gl + gs,
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∂gr,l

∂t
= −koffgr,l + kon Nr,lgs ∓ vg

∂gr,l

∂x
,

∂gs

∂t
= koff(gl + gr) − kon(Nr + Nl)gs,

Nl(x) =
∫ x

−L
[sl(y) + ml(y) − pl(y)] dy, (1)

Nr(x) =
∫ L

x
[sr(y) + mr(y) − pr(y)] dy. (2)

The terms containing spatial derivatives in the right hand sides describe the advec-
tion of (growing) plus and (shrinking) minus ends at rate vp, and of the granules at
rate vg . The terms (δ0 + δ1g) describe spontaneous and granule-based nucleation
with rates δ0 and δ1g, respectively. The terms ±#sr,l account for the destabilization
of the static minus ends. The granules dissociate from the MTs with a constant
rate koff and attach with rates proportional to the rate kon and the correspond-
ing MT densities (Nr,l(x)). The expression for Nl is derived from the fact that the
left-oriented MT density at x is equal to the number of fibers passing through the
coordinate x, which can be found as the number of the minus ends to the left of x
less the number of plus ends to the left of x. Nr is derived similarly. Equations (1)
and (2) introduce nonlocality to the model, rendering it remarkably nontrivial.

Note that by tracking MT plus and minus end densities instead of MT densities,
there is some ambiguity as to the exact structure of the MT network. In particular,
this approach cannot distinguish between a single MT spanning the entire frag-
ment from two parallel MTs arranged minus end to plus end that together span
the fragment. This ambiguity is not significant in the limit of rapid granule detach-
ment, as assumed throughout our analysis, because, in this limit, granules rarely
travel along a single MT from their attachment point all the way to the minus
ends.

No boundary conditions are needed for the static minus end and granule densi-
ties. The natural boundary conditions for the other densities are:

pr(L) = 0, mr(L) = 0, pl(−L) = 0,

ml(−L) = 0, gr(−L) = 0, gl(L) = 0.

We choose half the size of the fragment, L, as the length scale, and the tread-
milling rate, vp, as the velocity scale so that the time scale is L/vp. We choose the
(uniform) density of pigment in the untreated fragment, ḡ, as the scale for gran-
ule density because the total number of granules is conserved. The characteristic
scales of MT end densities are determined by the product of the characteristic nu-
cleation rate and the characteristic time for a MT to treadmill across the fragment:
p̄, m̄, s̄ = δ1 ḡL/vp.

Using these scales, we arrive at the following non-dimensional form of the model
equations:

∂pr,l

∂t
= ±∂pr,l

∂x
+ ($ + g),

∂mr,l

∂t
= ±∂mr,l

∂x
+ γ sr,l, (3)
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∂sr,l

∂t
= ($ + g) − γ sr,l, g = gr + gl + gs, (4)

ε
∂gr,l

∂t
= −k1gr,l + k2 Nr,lgs ∓ ∂gr,l

∂x
, ε

∂gs

∂t
= k1(gl + gr) − k2(Nr + Nl)gs, (5)

Nl(x) =
∫ x

−1
[sl(y) + ml(y) − pl(y)] dy, (6)

Nr(x) =
∫ 1

x
[sr(y) + mr(y) − pr(y)] dy, (7)

with parameters defined as

γ = #L/vp, $ = δ0/δ1 ḡ,

ε = vp/vg, k1 = koff L/vg, k2 = kon L3δ1ḡ/(vgvp), (8)

and boundary conditons

pr(1) = mr(1) = pl(−1) = ml(−1) = gr(−1) = gl(1) = 0. (9)

To avoid introducing confusing notation, here we use the same notation for both
dimensional and non-dimensional variables.

The behavior of the model depends crucially on the five non-dimensional com-
binations of parameters given in (8). Two of them, ε ∼ 0.1 and $ ∼ 0.1 are small
(treadmilling is much slower than the motor transport and spontaneous nucleation
is much slower than that on granules, respectively), while the other three γ , k1, k2
are hard to estimate from the experimental data. We deal with this situation by
considering two different limiting cases that are feasible biologically and suscepti-
ble to asymptotic analysis. Other realistic regions of parameter space are explored
numerically here and in (Cytrynbaum et al., 2004; Malikov et al., 2005).

3. Asymptotic analysis: Granule transport is faster than MT dynamics (1D)

In this section, we consider the case when k2 & k1 & ε−1 and $/ε ' γ ' 1: the
granules attach to MTs faster than detach, both attachment and detachment are
very rapid, the minus ends remain static for a time longer than needed for tread-
milling across the fragment, and the MT spontaneous nucleation rate is very small.
Using the notations g = gl + gr + gs and h = gl − gr and adding and subtracting
the equations in (5) for gl, gr, we obtain:

ε
∂g
∂t

= ∂h
∂x

, ε
∂h
∂t

= ∂

∂x
(gl + gr) − k1h + k2(Nl − Nr)gs. (10)

Because k1, k2 & ε, Eq. (5) for gs is always in a pseudo-steady state relative
to gl, gr, so gs ≈ (k1/k2)(gl + gr)/(Nr + Nl). Substituting this expression into the
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equation for h, we find:

ε
∂h
∂t

≈ ∂

∂x
(g − gs) − k1h + k1

Nl − Nr

Nr + Nl
(g − gs). (11)

In the limit k2 & k1, gs is small relative to g and the last equation reduces to:

ε
∂h
∂t

≈ ∂g
∂x

− k1h + k1
Nl − Nr

Nr + Nl
g. (12)

Taking time derivatives of the equation for g and spatial derivatives of this last
equation for h, we can eliminate the variable h leaving the following equation for
the variable g:

ε2

k1

∂2g
∂t2 + ε

∂g
∂t

≈ 1
k1

∂2g
∂x2 + ∂

∂x

(
Nl − Nr

Nr + Nl
g
)

. (13)

Finally, because ε2/k1 ' 1 and 1/k1 ' ε, we obtain heuristically the advection
equation:

∂g
∂t

≈ −1
ε

∂

∂x
(Vg), V = Nr − Nl

Nr + Nl
. (14)

The advection term in this equation has the following meaning: as granules come
on and off quickly, they essentially sample the local MT population. Thus, their
velocity is given by the difference between the probability of attaching to a left
mover, Nl/(Nr + Nl), and that of attaching to a right mover, Nr/(Nr + Nl). In the
limit γ ' 1, Eqs. (3) and (4) indicate that sr,l & pr,l, mr,l: most of the MT ends in-
side the fragment are static, because the treadmilling time is shorter than the minus
end destabilization time. In addition, by the definitions of Nr(x) and Nl(x) given in
(6) and (7), Nr(x) and Nl(x) are decreasing and increasing, respectively, with the
boundary conditions Nr(1) = 0, Nl(−1) = 0. Thus, the effective velocity V(x) has
a single zero, is positive at the left and negative at the right: V(x0) = 0; V(x) > 0
at x < x0; V(x) < 0 at x > x0. This means that on the fast time scale t ∼ O(ε) the
granules aggregate to a single peak at x0: g(x, t) ≈ 2δ(x − x0). Then, on the slow
time scale t ∼ O(1/γ ) the MT density equilibrates to the quasi-steady-state deter-
mined by the granule density: sr ≈ sl ≈ ($ + g(x))/γ = ($ + 2δ(x − x0))/γ . Inte-
grating, retaining linear terms with respect to $ and neglecting smaller terms, we
obtain the formula for the effective granule velocity:

V(x) ≈ (1 − $) · sign(x0 − x) − $x, (15)

where sign(·) is the signum function.
The first term in (15) corresponds to the strong self-aggregation of the granules

to arbitrary location x0. The small second term can be interpreted as the very slow
velocity field −($/ε)x, where x is the distance from the granules’ aggregate to the
center. Qualitatively, this interpretation is justified by the hierarchy of the time
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scales: on the fast time scale t ∼ O(ε) the granules aggregate to the delta-like peak
at the location determined by the initial MT distribution, then on the slow time
scale t ∼ O(1/γ ) the MT distribution re-arranges into an aster with the center at
the granules’ peak, and finally on the very slow time scale ε/$ & 1/γ & ε the peak
together with the aster’s focal point drifts to the center.

The asymptotic analysis predicts, most importantly, that the centering is only
possible if there are spontaneously nucleated MTs, $ > 0, which is the main fea-
ture of the qualitative model that cannot yet be tested experimentally. Second, the
model predicts that the granule aggregate approaches the center exponentially,
with a decreasing rate:

dx0/dt = −$/εx0, x0 = x0(0)e−t/T, T = ε

$
, (16)

which is in agreement with the previously observed exponential approach to the
center, and 5–10 min centering time (Rodionov and Borisy, 1997; Malikov et al.,
2005), recalling that ε ∼ $ ∼ 0.1 and the time scale was given by L/vp ∼ (20–
40 µm)/(4 µm/min) = 5–10 min.

4. Asymptotic analysis: Granule transport is slower than MT dynamics (1D)

To strengthen the results of the previous section, we consider another limiting
case: if the rate of attachment of the granules to MT is very small, k2 ' εγ 2k1
then the MT density adjusts fast to a quasi-steady-state determined by the slowly
changing granule density (justified below). As above, we assume that γ ' 1, so,
again, most of the MT ends inside the fragment are static minus ends. In the quasi-
steady-state, sr ≈ sl ≈ ($ + g(x))/γ . Substituting these expressions into the equa-
tions for the MT densities ((6) and (7)) and using the boundary conditions (9), we
obtain:

Nl ≈ $

γ
(x + 1) + 1

γ

∫ x

−1
g(y) dy, Nr(x) ≈ $

γ
(1 − x) + 1

γ

∫ 1

x
g(y) dy. (17)

Thus, the average MT density is of the order 1/γ , and in the limit k2/γ ' k1, the
detachment rate is much greater than the net rate of attachment, so most of the
granules are static. Corresponding re-scaling of the moving granule densities by
the small factor k2/(γ k1) in Eq. (5) demonstrates that the temporal and spatial
derivative terms in these equations can be neglected in comparison with the alge-
braic terms, and gr,l ≈ k2 Nr,lgs/k1 ≈ k2 Nr,lg/k1. Adding all three Eq. (5), we obtain
the equation ε∂g/∂t = ∂/∂x(gl − gr), and substituting the approximate expressions
for gr,l, we arrive at the approximate equation for the slow advection of the total
granule density:

∂g
∂t

≈ − k2

εk1

∂

∂x
([Nr − Nl]g) . (18)
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Finally, substituting (17) into (18), we obtain the closed approximation for the
granule density at the slow time scale:

∂g
∂t

≈ − ∂

∂x
(V(x)g) , V(x) ≈ k2

εk1γ

(

−2$x +
[ ∫ 1

x
g(y) dy −

∫ x

−1
g(y) dy

])

.

(19)

This equation demonstrates that the characteristic time scale of the granule dy-
namics, εk1γ /k2, is much greater than that of the MT dynamics, 1/γ if the inequal-
ity k2 ' εγ 2k1 is valid.

In the case $ = 0, the velocity field V(x) given by (19) advects the granules
toward the center of the granule distribution, since, at each x, V(x) is positive
(negative) if there are more granules located to the right (left) of x. Therefore,
the granules aggregate and we expect that their density converges to a peak. In-
deed, Grindrod (1991) showed that at $ = 0, the solution of Eq. (19) converges
to the delta-function: g(x, t) → 2δ(x − x0), where x0 is the arbitrary position of
the peak. (In fact, the next orders of magnitude of the perturbation theory pre-
dict the centering even in the case $ = 0, but on an astronomically long time
scale.)

At small, yet finite, values of $, Eq. (19) predicts that the position of the granule
aggregate would slowly drift toward the center of the aggregate with the centering
velocity −2$k2x0/(εk1γ ). This formula, similarly to the result of the previous sec-
tion, predicts that the granule aggregate approach the center exponentially, with
the slowing rate, and that the spontaneously nucleated MTs are crucial for the
centering.

5. Numerical analysis of aggregation and centering (1D)

To further corroborate the results of the asymptotic analysis and to gain additional
insight, we numerically solved the model equations in (3), (4), (6) and (7) for the
MT densities. Rather than explicitly solving the equations in (5) governing the
granule dynamics, we assumed that at each computational step the granule density
is in a quasi-steady state characterized by the advection-diffusion equation

1
k1

∂2g
∂x2 − ∂

∂x

(
Nr − Nl

Nr + Nl
g
)

≈ 0, (20)

which approximates Eq. (13) in the limiting case when ε ' 1, k1 ' k2, k1 ' 1/ε.
Note that in this case, the granule dynamics are fast in comparison with the MT dy-
namics justifying the quasi-steady state approximations on a time scale slower than
∼ε. Also, in this limit the model behavior does not depend on parameters ε, k2. We
solved Eqs. (3), (4), (6), (7) and (20) (the latter with no flux boundary condition)
using the parameter values k1 = 20, γ = 1 and varying parameter $ from 0 to 3.
To simulate realistic conditions in the nascent fragment, we assumed that initially
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there were only MTs with their minus ends at the very left and plus ends at the
very right and constant granule density. The simulations were done on a desktop
computer using Matlab with the forward explicit methods (Euler for Eq. (4), up-
and down-wind for Eq. (3), centered difference for the integral of Eq. (20)) with
the time step small enough for numerical stability (Garcia, 2000).

The simulation results are shown in Fig. 2. Figure 2A and B illustrates that a
fully developed granule aggregate forms near the left edge of the fragment within

Fig. 2 (A–B) Computed total granule density (solid) and the densities of the left- and right-
oriented MTs (×, ◦) are shown at 5 (A) and 50 (B) time units after the simulations started. This
simulation of the model equations with parameter values $ = 0.2, γ = 1 and k1 = 20 demon-
strates that the granules rapidly aggregate to the single peak, the MTs organized into the aster
(A), and then the granule aggregate and the aster focal point slowly drifted toward the center
(B). (C) The characteristic time constant of the centering (solid) determined numerically is a de-
creasing function of the spontaneous nucleation rate, while the characteristic time of aggregation
(dashed) is insensitive to the spontaneous MT nucleation. Note that peak height and width were
both used as measures of the state of aggregation. We found good agreement between them so
only one is shown here. (D) The dispersion of the granules in the aggregate increases with $ (ratio
of spontaneous nucleation granule-based nucleation).
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Fig. 2 Continued.

1–2 time units, and then this aggregate, together with its aster-like MT structure
drifts slowly toward the center, in agreement with the analytical results. Figure 2C
shows that the fast time scale of granule aggregation is relatively insensitive to the
relative levels of granule-mediated to spontaneous nucleation, while the charac-
teristic centering time is a decreasing function of the spontaneous nucleation rate.
Figure 2D demonstrates that the granule aggregate becomes wider as the spon-
taneous nucleation rate increases. This result has the following important biolog-
ical interpretation: the ratio of the spontaneous nucleation to nucleation on the
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granules can be neither too small (in which case the centering would be too slow),
nor too great (in which case the spontaneously nucleated MTs would overcome
the focussing effect of the granule-nucleated MTs and disperse the aggregate).

6. Centering in 2D complex-shaped fragments

Asymptotic analysis of the last limiting case can be extended heuristically to the
two-dimensional system leading to important novel predictions. A non-rigorous
generalization, similar to that presented in Cytrynbaum et al. (2004), of the
Eqs. (18) and (19) gives the following higher dimensional formulation:

∂g
∂t

= −∇ · (V(x)g) , V(x) = k2

εk1

∫ 2π

0
N(x, θ)nθ dθ,

nθ = cos(θ)i + sin(θ)j,

where the MTs densities, Nr(x) and Nl(x) have been replaced by an angle depen-
dent density N(x, θ).

This equation can be interpreted as follows: the advection of granules at x is
determined by the superposition of simultaneous movement along all MTs passing
through x; this can be thought of as a rapid sampling of the local MT network by
rapid attachment and detachment of granules. To find the number of MTs passing
through x and leading the granules in the direction nθ , it is sufficient to integrate
over all points visible from x (that is, the union of all points lying on line segments
that connect x to the boundary to the fragment and that lie entirely inside the
fragment). The number of MTs reaching x from a point y is determined by both
the granule density at y (due to granule-based nucleation) and the spontaneous
nucleation rate $. These MTs contribute to the motion of granules at x in the
direction y − x. Thus,

V(x) = k2

εk1γ

(∫

!(x)
g(y)

y − x
|y − x|

dy + $

∫

!(x)

y − x
|y − x|

dy
)

. (21)

Here !(x) is the area of the fragment that is visible from x.
We argue that because the first term in (21) describes the advection of the

granules in the approximate direction of the highest granule density, this term
in simple-shaped fragments is responsible for the granule aggregation into a sin-
gle peak, the position of which is arbitrary, similar to the 1D case. Then, also by
analogy with the 1D case, the global velocity field established by spontaneously
nucleated MTs that treadmill into the aggregate:

V(x)cent ∼
∫

!(x)

y − x
|y − x|

dy, (22)

determines the slow drift of the pigment aggregate.
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Fig. 3 The theoretical global velocity field established by the spontaneously nucleated MTs pre-
dicts that the granule aggregate centers closer to the concave boundary of the crescent-shaped
fragment (A). The experiment confirms this prediction (B, C). The spatial and temporal scales
and experimental methods are as described in Fig. 1.

We plotted this velocity field numerically (using a simple MatlabTM code) for
three complex-shaped fragments: crescent-like (Fig. 3A), bi-lobed (Fig. 4A), and a
“wounded” disk (Fig. 5A). Experimental results are in striking agreement with
the theory. In the crescent-like fragment, the velocity field converges to the
globally stable single node that is closer to the concave boundary of the frag-
ment. The reason is that many MTs originate at the bottom of the fragment
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Fig. 4 The theoretical global velocity field established by the spontaneously nucleated MTs pre-
dicts that the granule aggregate centers to the midpoint of the neck in the bi-lobed fragment (A).
The experiment confirms this prediction for the fragment of similar shape (B) demonstrating that
in a few minutes two aggregates appear in the centers of the lobes (C) merging in the next 10 min in
the corridor between the lobes (D). The spatial scales and experimental methods are as described
in Fig. 1.
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establishing the downward bias. The experimental result confirms this prediction
(Fig. 3C).

Similarly, the model predicts aggregation to the center of the corridor between
two lobes in the bi-lobed fragment (Fig. 4A). The experiment confirms this pre-
diction (Fig. 4D). (Figs. 3B and 4B show the original geometries of the fragments
as they are difficult to identify after aggregation.) Note that the corridor in the
experimental fragment is so narrow that the granules “spill out” from it into the
lobes. Curiously, before converging to the center, the granules aggregate first to
the centers of the lobes (Fig. 4C). The model explains this phenomenon as follows:
Initially, very few MTs pass through the corridor, so there is little communication
between the lobes. Thus, self-organization proceeds in the lobes almost indepen-
dently, according to the scenario for regularly shaped fragments. However, after
two polar asters are organized in the adjacent lobes, there is an increased num-
ber of MTs transiently anchored by their minus ends in one of the granule ag-
gregates extending through the corridor and passing through the other aggregate.
These MTs establish tracks for granules transport, so that granule density in the
corridor increases. This augments the nucleation of MTs with their minus ends in

Fig. 5 The theoretical global velocity field established by the spontaneously nucleated MTs in
the disc-like fragment with the curved “wound” near the edge of the disc (only a quarter of the
disc is shown) predicts that most of the granules aggregate toward the center of the disc, while
some of them aggregate into a local cluster “protected” from the global center by the wound. The
experiment confirms this prediction for the fragment of a similar shape (B) demonstrating that
in a few minutes two aggregates appear (C). Curiously, after tens of minutes, a single bent MT
reaching from the global center into the area behind the wound (D) transports all granules into
the bigger aggregate. The spatial scales and experimental methods are as described in Fig. 1.
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Fig. 5 Continued.
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the corridor extending outward and thus passing through both granule aggregates.
This accelerates directional granule traffic into the corridor further enhancing the
formation of a polar MT aster in the corridor and depleting granules from the ini-
tial aggregates. This positive feedback loop leads to the final centered aggregation.

Finally, the model predicts two locally stable single nodes in the velocity field
for the “wounded” disk-shaped fragment (Fig. 5A), because the wound screens
out a small area near the boundary of the fragment. As expected, the experiment
showed that two corresponding granule aggregates emerged in the predicted lo-
cations (Fig. 5B and C). However, astonishingly, a single bent MT extended from
the bigger aggregate into the screened area (Fig. 5D) and established a track on
which all granules from the smaller aggregate moved and merged with the main
aggregate (Fig. 5E). This observations points out a model limitation: even small
MT bending can on the long time scale perturb stability of the locally stable cy-
toskeleton patterns.

7. Discussion

In this paper, we showed that, while the self-organization and centering of MT
asters depends on MT dynamics and the activity of dynein, it need not involve
the application of forces nor MT transport. Instead, the pattern formation occurs
through minus end directed transport of granules, nucleation of MTs on the gran-
ules and elsewhere in the cytoplasm and MT treadmilling. This novel purely geo-
metric self-organization and centering mechanism relies on the minus-end trans-
port/nucleation positive feedback and on sensing of cytoplasmic volume through
spontaneous nucleation of MTs around the pigment aggregate. The model explains
self-organization as a positive feedback loop based on the mutually enhancing pro-
cesses of motor transport to MT minus ends leading to motor concentration and
motor-mediated nucleation of the MT minus ends. The centering is due to the non-
local geometric effect generated by spontaneously nucleated MTs which establish
a global directional bias for the motors.

In order to test the model, we made theoretical predictions for pattern forma-
tion in the bi-lobed, crescent and “wounded” fragments and compared them with
experimental observations. The semi-quantitative agreement between experiment
and theory lends additional support to the model. Another model prediction is
that changes of total MT nucleation rate do not significantly affect the center-
ing rate, but the ratio of MTs nucleated locally on the pigment granules to those
nucleated at the random sites in the cytoplasm is of critical importance. If the frac-
tion of spontaneously nucleated MTs is too great, MT minus ends are no longer
focussed and the radial organization was lost. If the fraction of spontaneously nu-
cleated MTs is too small, the radial array is formed, but moves to the center too
slowly. Therefore, in order for the radial MT array to form and relocate to the
center, a delicate balance is essential between the rate of MT nucleation on the
pigment granules and in the peripheral cytoplasm.

Mathematical analysis in this paper provides significant insight into the mech-
anisms of transport and polarization in the cell and is complementary to results
of previous computational modeling. More rigorous mathematical investigation of
our model, similar to that in (Kang et al., 2005), will lead to further understanding
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of the pattern formation in polymer–motor systems. Also, the model can be ex-
tended in the future to more general self-organization phenomena in cytoskeleton.
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