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Abstract

The response of an isolated cardiac cell to a periodic stimulus has traditionally been studied in terms of the duration of the action

potential (APD) immediately following each stimulus. The APD approach offers explanations of several experimental observations,

including the stability of the so-called 1:1 response which is thought to be relevant to the problem of spiral wave breakup and the

onset of fibrillation. A discussion of some theoretical problems with the APD approach is given in order to motivate the derivation

of a new type of map. This new one-dimensional map, which gives successive values of the prestimulus transmembrane potential

instead of successive values of APD, relies on the presence of a one-dimensional slow manifold in the underlying dynamics. This

slow manifold map extends the understanding offered by the APD approach to include an explanation of Wenckebach rhythms. In

addition, the bifurcation structure of the map provides a unified description of the parameter dependence that agrees fairly well with

experimental observation.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The normal activation of cardiac tissue begins at the
sino-atrial (SA) node which fires periodically, exciting
the atrial tissue around it. The excitation propagates
through the atria and reaches the atrio-ventricular (AV)
node where the signal is transmitted to the ventricles.
Normally, each firing of the SA node induces the
excitation of the ventricles through this pathway.
However, if the AV node is paced too rapidly or the
tissue is unhealthy (suffering from ischemia, for
example) this well coupled stimulus–response pattern
can degenerate into any one of a number of pathological
coupling patterns (Yehia et al., 1999).
One avenue of research on these rhythms has focused

on the interplay between the dynamic behavior of
individual cells and the electrotonic coupling that occurs
between cells through gap junctions (Cherry and
Fenton, submitted for publication; Cytrynbaum and
Keener, 2002; Echebarria and Karma, 2002). Although
coupling certainly plays an important role, the study of
isolated cells focuses on the simplest of excitable systems
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and, in this case, provides a great many explanations for
the observed rhythms. Several experimental studies have
shown that spatially uniform systems (either small pieces
of tissue (Guevara et al., 1984; Hall et al., 1999) or
isolated ventricular myocytes (Delmar et al., 1989b;
Guevara et al., 1989; Yehia et al., 1997, 1999)) can
exhibit response patterns analogous to those referred to
above. In these studies, it is observed that if the
frequency of pacing is sufficiently low, the response of
the cell is identical with each stimulus. This type of
rhythm is referred to as a 1:1 rhythm where the first 1
indicates one stimulus and the second 1 indicates one
superthreshold response. If the frequency is increased
beyond some critical value, the responses vary from one
stimulus to the next generating a 2:2 rhythm, sometimes
referred to as alternans. The appearance of these two
distinct superthreshold responses is understood to
correspond to a loss of stability of the 1:1 rhythm.
Although the motivation for these studies is most

easily explained in terms of observations of AV node
conduction anomalies, Hall et al. offer a different
motivation for their experiments (Hall et al., 1999).
Their goal is to understand the stability of the 1:1
rhythm with the hope that it will shed light on the
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problem of spiral wave breakup. This idea led to the
formulation of the restitution hypothesis (Karma, 2000).
In cardiac tissue that is sustaining a reentrant arrhyth-
mia, each cell fires periodically with a period determined
by the circulation of the reentrant signal. The restitution
hypothesis proposes that the question of stability for
reentrant arrhythmias can be reduced to that of stability
of the 1:1 response for a single cell (either in isolation or
in tissue), although the details of this connection are not
completely understood and are the subject of current
debate (Ideker et al., 2002; Gilmour, 2002). Nonetheless,
through the restitution hypothesis, the study of isolated
ventricular myocytes under periodic stimulation be-
comes important in understanding reentrant arrhyth-
mias as they provide a model system for the more
complicated problem of cells in tissue. It should be
noted that the value of single cell studies is limited as the
role of spatial coupling in tissue is often significant
(Cytrynbaum and Keener, 2002; Cherry and Fenton,
submitted for publication; Echebarria and Karma,
2002). Despite this, it is worth building a more complete
understanding of the simple problem of isolated cells in
hope that it will shed light on the more complicated
scenario of tissue dynamics.
The approach to understanding the stability of the 1:1

rhythm taken in many studies, both experimental and
theoretical (Delmar et al., 1989a, b; Fox et al., 2002;
Guevara et al., 1984; Hall et al., 1999; Lewis and
Guevara, 1990; Nolasco and Dahlen, 1968; Otani and
Gilmour, 1997; Tolkacheva et al., 2003; Yehia et al.,
1997, 1999), is to focus on the duration of the excited
phase referred to as the action potential duration
(APD). A common assumption, referred to here as the
APD assumption, is that the duration of an action
potential in a periodically stimulated cell is a function of
the period of time between the end of the previous
action potential and the beginning of the current one.
This recovery period is referred to as the diastolic
interval (DI) (see Fig. 1).
Although there is evidence that the assumption is not

truly valid (a fact often explained in terms of memory
effects (Cherry and Fenton; Fox et al., 2002; Tolkacheva
et al., 2003)), it is generally a good approximation and
APDn DIn BCL

Fig. 1. A schematic representation of the transmembrane potential of

a cell under periodic stimulus. An excited phase is called an action

potential (AP) and its duration is the APD. The recovery period

between APs is the diastolic interval (DI).
provides an elegant theory that explains many of the
experimental observations.
The assumption allows for the definition and study of

a one-dimensional map given by APDnþ1 ¼ gðDInÞ: The
function g; referred to as the restitution curve, is often
defined by fitting an exponential function to experi-
mental data. To generate a map from APDn to APDnþ1;
DIn is computed as BCL�APDn where BCL is the
stimulus period or basic cycle length. Stability of the 1:1
rhythm is equivalent to the condition jg0jo1 where the
slope is evaluated at the fixed point.
Thus, as shown by Guevara et al. (1984), the APD

map offers an explanation for the loss of stability of the
1:1 and the appearance of a 2:2 rhythm through a period
doubling (or flip) bifurcation. The added assumption
that there is a minimum DI below which a cell does not
respond to stimulus predicts the presence of a 2:1
rhythm which exists bistably with the 1:1 and 2:2
rhythms. These phenomena have also been observed in
experiments (Guevara et al., 1984; Hall et al., 1999;
Yehia et al., 1999).
Despite these successes, the APD map does have its

limitations. For example, even when the map is defined
by fitting the restitution curve to experimental data,
quantitative details fail to agree. These include the
location of the point at which stability is lost (Guevara
et al., 1984; Hall et al., 1999; Fox et al., 2002) as well as
details of the hysteretic loop (Hall et al., 1999; Yehia
et al., 1999). Furthermore, the existence of the so-called
Wenckebach rhythms, described in more detail later,
cannot be explained in the context of an APD map, at
least if the APD map is derived from or even consistent
with an ODE type model.
These failures have stimulated attempts to define a

two-dimensional map that extends the APD approach
by introducing a memory variable (Chialvo and Jalife,
1990; Fox et al., 2002; Otani and Gilmour, 1997) or, in
one case, a generalized one-dimensional map with
explicit dependence on BCL (Tolkacheva et al., 2003).
These memory models successfully extend the explana-
tory power of the APD map in a few directions.
However, many questions remain unanswered including
an explanation of the ionic mechanisms underlying
memory and, closely related to this last point, the
connection between (if not a derivation of) these
memory models and ionic ODE models. Although the
question of ionic mechanisms is not directly addressed in
this paper, a framework for exploring that question,
which can be generalized to ionic models, is constructed.
In this paper, starting from an ODE model for

excitability, three related one-dimensional maps are
defined. The first map is derived from a piecewise linear
FitzHugh–Nagumo (FHN) system of ODEs in the
singular limit (e-0). This singular ODE system satisfies
the APD assumption and leads to a map that is
essentially the well-studied exponential APD map.
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Fig. 2. A 2:1 rhythm found in the FHN system with a periodic

stimulus ðBCL ¼ 9:5Þ; analogous to the experimentally observed 2:1
rhythm. Top: FHN phase plane showing the trajectory of a 2:1

rhythm, a full action potential and a subthreshold response. Bottom:

The same rhythm plotted as a function of time.
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Improving on this map, a second map is derived from a
generic FHN system but in this case, not using the
singular system. Although this non-singular system fails
to satisfy the APD assumption, we can derive a one-
dimensional map that offers an explanation of the
Wenckebach rhythms. In fact, by introducing a simpli-
fied version of this map (the third map), we can
construct a fairly detailed bifurcation diagram including
regions of existence and stability of these rhythms.
Although these last two ‘‘improved’’ maps are derived
from FHN dynamics and cannot be considered physio-
logically accurate, the idea underlying their derivation is
applicable to more physiological ionic models. If a
similar map can be derived from one of the more
physiological ionic models (for example, see Beeler and
Reuter, 1977 and Luo and Rudy, 1991, 1994), it is likely
that more accurate quantitative predictions can be
made. Although the successful derivation of an im-
proved one-dimensional map from the FHN model does
not necessarily rule out the need for a higher dimen-
sional map, it certainly suggests that more analysis of
ionic models is required before dismissing the one-
dimensional approach. Interestingly, if a two- (or
higher-) dimensional map is required to properly explain
cardiac cell dynamics, the reduction technique intro-
duced here is capable of providing such a map and, in
doing so, offers an ionic basis for the notion of a
memory variable.
1 If the period of pacing is shortened even further, stimuli begin to

overlap with the plateaus of action potentials and more complicated

rhythms result. For the present study, we avoid stimulus protocols

with such short periods.
2. An experimental bifurcation diagram

In a recent publication, Yehia et al. give a compre-
hensive discussion of the types of rhythms that an
isolated cardiac cell can demonstrate under regular
pacing (Yehia et al., 1999). A cell isolated from rabbit
ventricular muscle was stimulated periodically and the
resulting sequence of APDs was measured. The two
parameters of interest were the BCL and the amplitude
of the periodic stimulus.
It was found that for sufficiently large BCL, the

response pattern settled down to a 1:1 rhythm. For
sufficiently small BCL, the measured APD alternated
between that of a full action potential and that of a
subthreshold response with essentially no action poten-
tial, in other words, a 2:1 rhythm (see Fig. 2).
These two rhythms occur over a large range of

stimulus amplitudes and are relatively easy to under-
stand. For large BCL, the cell has sufficient time to
recover from the previous action potential before the
next stimulus. This allows the cell to undergo an
identical action potential with each stimulus. The 2:1
rhythm develops because of a lack of recovery time
between stimuli. Following a full action potential, the
cell requires more time than allowed by the stimulus
period in order to recover excitability. A stimulus
delivered during this unrecovered stage elicits a sub-
threshold response.1

More subtle and interesting dynamics appear in
between these two extremes. The rhythms that appear
at intermediate pacing frequencies can be divided into
three general classes based on stimulus amplitude.
For large stimulus amplitude and decreasing BCL, the

1:1 rhythm gives way to a sequence of APDs that
alternate in amplitude. Unlike the 2:1 rhythm, which
appears for smaller BCL, this 2:2 rhythm (alternans) is
characterized by two distinct superthreshold responses
of different duration.
For intermediate stimulus amplitude, a direct transi-

tion from 1:1 to 2:1 is observed with no other rhythm
appearing in between. Furthermore, Yehia et al. show
that there exists an interval of BCL in which the 1:1 and
2:1 rhythms coexist and form a hysteretic loop (Yehia
et al., 1999). This kind of bistability has been found
between the 2:2 and 2:1 rhythms as well (Hall et al.,
1999). See Figs. 3.
For low stimulus amplitude, the 1:1 rhythm is

replaced by N þ 1 : N rhythms (NX2) as BCL de-
creases. This means there are N þ 1 stimuli but only N

superthreshold responses. This type of rhythm is
referred to as a Wenckebach rhythm.
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Fig. 3. A schematic representation of the bistability observed

experimentally. Note the bistability of the 1:1 and 2:1 rhythms and

of the 2:2 and 2:1 rhythms. See Guevara et al. (1984), Yehia et al.

(1999) and Hall et al. (1999) for actual experimental bifurcation

diagrams.
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Fig. 4. Bifurcation diagram for the log map with Z ¼ 1; s ¼ 0:8 and
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Fig. 5. The solid curve is the exponential map with parameters typical

of experimental fits (APDmax ¼ 616 ms; A ¼ 313 ms; DImin ¼ 86 ms
and t ¼ 207 ms) (Hall et al., 1999). The dashed curve is the log map
with parameters chosen, as described in the text, that provide the best

fit (Z ¼ 0:69; s ¼ 0:74; m ¼ 269 ms and a ¼ 0:036).
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3. The one-dimensional APD iteration model

One of the fundamental assumptions of the APD map
approach, the APD assumption, is that APD is a
function of the preceding recovery period or DI only. If
the cell is assumed to be either excited or recovering,
then BCL ¼ APDþDI and APDnþ1 ¼ gðDIÞ ¼
gðBCL�APDnÞ: In the case of subthreshold responses,
where BCL�APDn is less than some minimum DI
required to reestablish excitability, it is assumed that
the subthreshold stimulus has no effect on the cell
and the cell receives an extra BCL in which to recover.
Thus, if the cell undergoes N unsuccessful stimuli be-
fore firing, DI ¼ N � BCL�APD and APDnþ1 ¼ gðN �
BCL�APDnÞ:
The typical choice for g is an exponential of the form

gðDIÞ ¼ APDmax � Ae�DI=t; DI > DImin; ð1Þ

where APDmax;A; t and DImin are parameters to be fit.
We refer to this map as the exponential map.
With a careful choice of parameters, this map can

demonstrate the progression of 1:1, 2:2 and 2:1 rhythms
with the hysteretic properties observed in experiments.
Other parameter choices can show a direct transition
from 1:1 to 2:1. Unfortunately, it is not clear how the
parameters of the model relate to experimental para-
meters (for example, stimulus amplitude).
As mentioned earlier, the map is incapable of giving

quantitative fits to actual cell data (Hall et al., 1999;
Yehia et al., 1999); nor does it explain the existence of
Wenckebach rhythms. Moreover, Hall et al. fit the
parameters in (1) to their data and find that fixed points
that were stable in their experiments correspond to fixed
points of the map for which g0ðDIÞ > 1: According to the
theory of one-dimensional maps, these two facts are
inconsistent.
A common conclusion drawn from the shortcomings

mentioned is that a complete understanding of the
dynamics requires at least a two-dimensional map where
the first variable is APD and the second is a memory
variable that keeps track of the history of the system
(Chialvo and Jalife, 1990; Fox et al., 2002; Otani and
Gilmour, 1997). However, one possible explanation for
the observed inconsistencies, at least in experiments on
intact tissue in contrast to isolated cells, derives from the
influence of cell–cell coupling on the stability of
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Fig. 6. The phase plane (top) and temporal evolution (bottom) of the

FHN system under periodic stimulus showing a 7:6 rhythm. Note the

successive approach to the middle nullcline from below until a final

sub-threshold response. Although there is no true threshold in the

FHN model, a weak concept of threshold divides the sixth and seventh

stimuli (BCL ¼ 10:87).
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reentrant rhythms. Electrotonic effects have been shown
to modify the stability condition by introducing
dependence on conduction velocity allowing for stable
rhythms despite slopes greater than unity (Cytrynbaum
and Keener, 2002; Cherry and Fenton, submitted for
publication). Another possibility, described in a recent
publication by Tolkacheva et al. (2003), is that by
neglecting explicit dependence of APD on BCL, the
slope of the APD–DI curve (in contrast with the slope of
the actual map) gives an inaccurate stability condition.
To better understanding the shortcomings of the

exponential map, starting from the singular FHN
system, the following one-dimensional map is derived
in the appendix:

APDnþ1 ¼ hðDInÞ ¼ mZ ln
1� ð1� aÞe�DIn=m

a

� �
;

where a is the excitation threshold, m is the time constant
for recovery, Z is the ratio of the time constant
associated with the excited phase to m and DIn ¼ BCL�
APDn: As shown in the appendix, this map is
qualitatively and, to a large extent, quantitatively
equivalent to the exponential map. As the FHN model
is useful in the context of cardiac tissue in a qualitative
sense only, it is not surprising that a map derived from it
gives a poor fit to cardiac cell data. In Section 4.1, we
derive a one-dimensional map from the FHN model that
explains the presence of Wenckebach rhythms. Finally,
in addition to the ideas suggested in the previous
paragraph, the inconsistency of fixed point stability
and g0ðDIÞ > 1 can be explained by the fact that g is
not well defined for cardiac tissue rather than by the lack
of a second dynamic variable. In fact, the map derived in
Section 4.1 is also a one-dimensional map but, unlike
gðBCL�APDÞ; it does not have the feature that a
change in BCL amounts to a horizontal shift of the map
(as addressed in Tolkacheva et al. (2003) by the
introduction of explicit BCL dependence in the map).
For cardiac tissue, any successful map must be calculated
separately for each BCL since it depends on BCL through
more than just its dependence on DI (Elharrar and
Surawicz, 1983). If cardiac tissue demonstrates the slow
manifold structure that characterizes the FHN system
(explained more carefully in Section 4.1), then the
‘‘memory’’ of the system can be summarized by BCL, a
parameter of the protocol, without appealing to a second
map variable.
To emphasize the key point of this section, the

problems with the APD map are not necessarily related
to the details of the fits used to define it nor the absence
of a memory variable. Reducing the high-dimensional
and complex dynamics of cardiac cells to a single
variable, in particular one that is not a state variable of
the system, exposes one to the possibility of missing
crucial features. The log map and the ODE system from
which it is derived offer a unique case in which APD is
equivalent to a state variable. Moreover, the structure of
the system is sufficiently simple that this single state
variable carries all the dynamical information of the
system. In general, a single state variable is only
sufficient if the structure of the system is sufficiently
simple, as discussed in next section.
4. Building a better map

A careful look at some of the experimental data,
particularly relating to Wenckebach rhythms, reveals
some features that are missing in the log and exponential
maps. A Wenckebach rhythm consists of N super-
threshold responses followed by a final subthreshold
response. The first N responses are characterized by a
beat to beat decrease in amplitude and increase in
activation delay (Delmar et al., 1989b). As Wenckebach
rhythms are periodic, this monotone behavior must
switch after the final skipped beat, returning to the first
full response. Thus, a map capable of explaining
Wenckebach rhythms is necessarily non-monotonic.
This feature of Wenckebach rhythms can be found in

the FHN model with cubic right hand side (as depicted
in Figs. 6 and 7):

vt ¼
1

a
vð1� vÞðv � aÞ � w; ð2Þ

wt ¼ eðv � gwÞ ð3Þ

with a ¼ 0:1; e ¼ 0:7; g ¼ 0:1 and a shock amplitude of
s ¼ 0:4: Because of the decreasing monotonicity of both
the log and exponential maps, they are incapable of
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generating Wenckebach rhythms of this type. Some-
where between the cubic model used to generate the
tracing in Fig. 6 and the map derived in the appendix,
Wenckebach rhythms were lost. Experimental studies
have uncovered such nonmonotonicities in the restitu-
tion curve of cardiac cells (Chialvo and Jalife, 1990;
Watanabe et al., 1995) and some theoretical work has
focused on the question of restitution curves with
regions of negative slope (Panfilov and Zemlin, 2002;
Qu et al., 1997; Fenton et al., 2002) but these studies did
not draw any connection to Wenckebach rhythms. Early
work on Wenckebach rhythms by Guevara et al.
suggests a form for a finite difference map based on
experiments with rabbit ventricular myocytes that
invokes negative restitution (Guevara et al., 1989).
The phase plane in Fig. 6 exhibits the feature that

successive responses start successively closer to the
middle branch of the cubic shaped nullcline, the
structure that is responsible for threshold-like behavior.
Because of the proximity to this slow dynamic region,
the upstroke is delayed more with each beat. This delay
is similar to the experimental observation of increase in
activation delay mentioned above (Delmar et al., 1989b)
and is the key to getting the required non-monotonicity
of the map.
A Wenckebach rhythm starts with a full action

potential, uninfluenced by the middle nullcline. The
next stimulus is applied when the cell has recovered just
enough so that the stimulus puts it near the nullcline. It
can either fall above the nullcline (subthreshold), in
which case the rhythm is 2:1, or it can end up in the
delay region. Despite a lower amplitude excitation, the
delay in activation means that with the next stimulus, it
is possible that the cell finds itself once more in the delay
region. This process can be repeated generating higher
order Wenckebach rhythms (as seen in Fig. 6).
Numerical simulations of the FHN model, with para-
meters as given above, demonstrate the existence of
Wenckebach rhythms of order as high as 19:18
(BCL ¼ 10:92).
It should be noted that because of the delays near the

middle branch of the cubic nullcline, APD is not a
suitable variable for defining a map. In the singular
limit, the state of the system is either excited or at rest
leading to unambiguous definitions of both DI and
APD. For e > 0; the definitions are no longer clear cut.
The usual method of defining APD experimentally is to
choose a threshold value of v: The action potential
begins when that value is first surpassed and terminates
when v drops below it. The problem with implementing
this definition when defining an APD map is that there
are sometimes two distinct action potentials that have
the same duration. This is necessarily true when the
parameters are chosen in the range for which Wenck-
ebach rhythms are seen but might also be true in other
parameter regimes. This is demonstrated in Fig. 8 for
which a family of initial conditions were chosen with the
same initial v value but a variety of w values. The value
of v ¼ 0:28 was chosen such that the majority of pairs
ðv;wÞ were superthreshold thereby generating a diverse
family of action potentials. At 10.87 non-dimensional
time units later (this is the value of BCL that led to the
7:6 rhythm seen in Fig. 6), a stimulus was applied,
generating a second family of action potentials (see Fig.
8a). For each initial condition, the second APD was
plotted against the first APD giving the APD ‘‘map’’
(see Fig. 8b). Note that there is a nontrivial interval of
APD1 having two associated values of APD2: The
overall shape of the ‘‘map’’ is reminiscent of the usual
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restitution curve except for this multivalued interval. In
fact, for larger initial values of v; relevant in the
alternans parameter regime, the curve is generally
functional (not shown) but in the range of v relevant
to Wenckebach rhythms, it is necessarily non-func-
tional. Although little direct evidence is currently
available for a non-functional interval of this type in
ionic models (Courtemanche et al., 1993) or in cardiac
tissue, such a region is likely to be found when the state
variables flow through regions of the state space that are
crucial for the existence Wenckebach rhythms, in
particular, regions near the higher dimensional analogue
of the middle branch of the v nullcline.
Recall that in deriving the log map, the singular limit

reduces the dynamics to two one-dimensional branches
so there is no possibility of getting the non-monotonicity
required for the existence of Wenckebach rhythms. In
particular, the delay associated with the middle nullcline
is absent.2

This one-dimensional shortcoming sounds as if it
lends credence to the claim that a one-dimensional map
is insufficient. The problem with the log map, and by
association the exponential map, is that it is derived
from ODE dynamics that are restricted to a one-
dimensional manifold. However, the dimension of a
map derived from an ODE system need not be the same
as the dimension of the ODE system. For example, a
Poincar!e map derived from a two-dimensional flow is a
one-dimensional map. Thus, it might be possible to
improve on the log map without abandoning the
simplicity of a one-dimensional map. To do so, we
require a higher-dimensional ODE system that allows
for the non-monotonicity of recovery described above
while still maintaining reducibility to a one-dimensional
map.
2Piecewise linear dynamics (with only two branches) are worse than

cubic dynamics in that the delay region is missing, even for e > 0; but in
either case the singular limit calculation ignores the subtleties of that

region.
Unlike a Poincar!e map, which has a dimension one
less than the ODE system from which it derives, any
high dimensional system that has a one-dimensional
slow manifold should be reducible to a one-dimensional
map. Careful examination of an ionic model might
uncover the appropriate one-dimensional slow manifold
structure and allow for the derivation of a quantitative
one-dimensional map using the technique described
here. If, however, the slow manifold is two-dimensional
(or higher), the system cannot be reduced to a one-
dimensional map, in which case the technique presented
here can be modified to derive the appropriate two-
dimensional (or higher) map thus providing a rigorous
derivation of a memory map when such a map is
required. In the next section, we demonstrate this
technique on the simpler and more tractable FHN
model in the non-singular-limit case.

4.1. The slow manifold map

We have already seen that in the limit e-0; the map
derived from the FHN model lacks certain key features.
However, if we take e to be small but nonzero, the rapid,
but not instantaneous, collapse to a slow manifold (see
Fig. 9) provides the structure we require to derive an
improved one-dimensional map. A similar approach to
reducing a piecewise linear FHN model was used by
Coombs and Osbaldestin (2000) to understand rhythms
in the context of paced nerve cells.
Defining the map requires an analytical expression for

the slow manifold. An equation that describes the shape
(but not the temporal parameterization) of trajectories is
given by

dw

dv
¼ e

v � gw

f ðvÞ � w
: ð4Þ

A ðv;wÞ relation for any trajectory can be expressed as
an asymptotic series in e: w ¼ FðvÞ ¼ F0ðvÞ þ eF1ðvÞ þ
e2F2ðvÞ þ Oðe3Þ: Using (4), the slow manifold can
be approximated using a standard perturbation



ARTICLE IN PRESS
E.N. Cytrynbaum / Journal of Theoretical Biology 229 (2004) 69–8376
calculation. The leading order terms of (4) give the
following equation:

ðf ðvÞ �F0ðvÞÞF0
0ðvÞ ¼ 0: ð5Þ

There are two options. If we assume F0ðvÞaf ðvÞ then
F0ðvÞ is constant which corresponds to a trajectory on
the fast manifold. We are interested in the slow manifold
so we proceed with F0ðvÞ ¼ f ðvÞ: The higher-order
terms are calculated similarly:

F0ðvÞ ¼ f ðvÞ;

F1ðvÞ ¼ �
v � gf ðvÞ

f 0ðvÞ
;

F2ðvÞ ¼
F1ðvÞðg�F0

1ðvÞÞ
f 0ðvÞ

:

Suppose the state variables of a theoretical FHN cell
lie on or near the slow manifold. If a stimulus is applied
to the cell, the point in the phase plane which represents
its state is translated horizontally. From this new
location, it is allowed to flow for BCL time units before
the application of the next stimulus. This defines a map
from the state of the cell prior to the first stimulus to the
state of the cell prior to the second stimulus.
For sufficiently large values of BCL, the state of the

cell sits on or near the slow manifold prior to each
stimulus which allows for the definition of a one-
dimensional map. Using the functional relationship w ¼
FðvÞ; we need only specify the v component of the
prestimulus state vector. We can generate a sequence of
prestimulus transmembrane potentials, vn; satisfying
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Fig. 10. This figure demonstrates the source of the non-monotonicity

of the slow manifold map in the Wenckebach parameter range. A small

section of the slow manifold and its poststimulus evolution (at five

successive time points) is represented by the labeled solid curves. The

transverse solid curve shows one of the ‘‘long delay’’ trajectories. On

either side of this highlighted trajectory, other parts of the flow move

faster, thereby creating the non-monotonicity when all points finally

return to the slow manifold. Note that to allow for these long delays

near the middle branch of the nullcline and, hence, Wenckebach

rhythms, the stimulus amplitude must be small.
vnþ1 ¼ MðvnÞ where M is the map described in the
previous paragraph, which we refer to as the slow
manifold map.
It is important to note, in light of earlier comments,

that the slow manifold map relies on the two-dimen-
sional nature of the FHN system. The flow is only
restricted to a one-dimensional manifold in the latter
part of its evolution. The freedom of the initial two-
dimensional flow allows for differential time lags in the
approach to the manifold to generate the nonmonoto-
nicities that are crucial to finding Wenckebach rhythms
(see Fig. 10).
5. Numerical representation of the map

This section gives a detailed description of the
parameter dependence of the map M; described in
Section 4.1. The goal is to understand the experimental
observations discussed in Section 2 to the extent that
this is possible with a FHN based map. Earlier modeling
approaches have been successful at explaining some of
these observations including alternans (2:2 rhythms) and
the hysteresis and bistability of the 1:1 and 2:2 rhythms
with the 2:1 rhythm (Guevara et al., 1984; Nolasco and
Dahlen, 1968). Wenckebach rhythms have not been as
well explained by earlier models. Guevara et al. (1989)
offer some preliminary ideas on the form a Wenckebach
map must take, however, they do not succeed in relating
this form to the general context of understanding the
transition from a 1:1 rhythm to a 2:1 rhythm.
The accompanying diagrams were generated by

explicitly calculating the map and its second iterate for
particular parameter values on a course grid and then
using a bisection method to accurately find the locations
of all fixed points and period two solutions. The
Wenckebach rhythms in Fig. 13 were calculated by
iterating the map until steady solutions were achieved.
Stability was determined by numerically calculating the
slope at the fixed point or, for period two solutions, the
product of the slopes. The extent to which this is an
accurate means of determining stability in the original
paced FHN model is related to the accuracy of the
assumption that the slow manifold is one-dimensional
but for the reduced map, it is a theoretically exact means
of doing so. From the bifurcation structure, a unified
explanation of the transitions between rhythms covering
the full spectrum of alternans, hysteresis and Wenck-
ebach rhythms can be given.
At relatively high stimulus amplitude ðs ¼ 0:8Þ; the

bifurcation diagram is essentially a simple supercritical
flip bifurcation (not shown). The 1:1 rhythm is stable for
high BCL and loses stability at BCL ¼ 4:2: A 2:2
rhythm appears at the bifurcation point and gradually
expands until it reaches what must be considered a 2:1
rhythm. There is no sharp transition between them nor
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any bistability. Except for the lack of bistability, this
appearance of a 2:2 rhythm at high stimulus amplitude
is consistent with experiments.
Again consist with the observations of Yehia et al.

(1999), at slightly lower stimulus amplitude (s ¼ 0:65),
the loss of stability of the 1:1 rhythm is a subcritical flip
bifurcation generating an interval of bistability between
the 1:1 and the 2:1 rhythm (Fig. 11). The steep transition
in the map at around vn ¼ �0:2 reflects the large change
in the length of time spent excited for stimuli on either
side of the middle branch of the nullcline. This steep
transition is successively more pronounced at lower
stimulus amplitudes (see Figs. 12 and 13) due to longer
delays for barely superthreshold stimuli.
For s ¼ 0:6; the bifurcation diagram is almost the

same as for s ¼ 0:65 with the primary difference being
that the 1:1 rhythm loses stability through a supercritical
flip bifurcation allowing for a short interval on which a
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Fig. 11. The slow manifold map (top) for BCL ¼ 6:4 and s ¼ 0:65 and
the corresponding bifurcation diagram (bottom) for s ¼ 0:65: Top: the
dashed curve represents the 2:1 rhythm and the fixed point is unstable.

Bottom: the bifurcation diagram shows a subcritical flip bifurcation

allowing for bistability between the 1:1 and 2:1 rhythms. The solid

curves are the stable 1:1 and 2:1 rhythms. The dotted curves are the

unstable 1:1 rhythm and an unstable period two rhythm.
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Fig. 12. The slow manifold map (top) for BCL=7.4 and s ¼ 0:6 and
the corresponding bifurcation diagram (bottom) for s ¼ 0:6: Top: the
dashed curve represents the 2:1 rhythm and the fixed point is unstable

but there is also a stable 2:2 rhythm (not shown on map). The

difference between this case and s ¼ 0:65 is the transition at around
v ¼ �0:2 is slightly steeper and the corner at the base of the transition
is more pronounced. Bottom: the bifurcation diagram shows a

supercritical flip bifurcation of the 1:1 rhythm leading to alternans.

Both the 1:1 and 2:2 rhythms show bistability with the 2:1 rhythm.
stable 2:2 rhythm co-exists with a stable 2:1 rhythm as
observed in experiments. Note that this difference arises
from a slightly steeper transition near v ¼ �0:2 and a
sharper corner at the bottom of the transition (see Fig.
12).
For s ¼ 0:4; the lowest value considered, we see a

dramatic change in the map (see Fig. 13). The steep
transition in the map is nearly a jump discontinuity and
the sharp corner at its base, now a sharp spike,
introduces the non-monotonicity required for Wenck-
ebach rhythms. Changes in BCL essentially shift the
map vertically so that at high values, the fixed point is
on the flat section to the right and, as BCL decreases,
the fixed point moves left causing two new (unstable)
fixed points to appear as the spike crosses the identity
line. One of these fixed points collides with the stable
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fixed point leaving a narrow gap through which iterates
‘‘bounce’’ thus generating Wenckebach rhythms of
relatively high order. A 4:3 rhythm is shown in Fig.
13. The bifurcation diagram shows a sequence of
Wenckebach rhythms from 2:1 to 7:6. These rhythms
were calculated by iterating the map until a steady
rhythm was achieved so that only the stable rhythms are
seen. Note that the structure of the map is as predicted
by Guevara et al. (1989) although the one presented here
is not an APD map.
It is interesting to note that there is no bistability

between Wenckebach rhythms and, in fact, a short
interval of BCL separates each rhythm from the next.
The stable rhythms in between are complicated and
interspersed with chaotic cycles. Although we do not
rigorously address this claim of chaos, there is a
structure similar to the well known Smale Horseshoe
Map in the full FHN flow as can be seen in Fig. 10. In
addition, the bifurcation diagram for s ¼ 0:5 does not
indicate the presence of Wenckebach rhythms but does
show evidence of a period doubling cascade. At s ¼ 0:4;
this period doubling cascade is likely to occur in the
spike although over an extremely short, and hence
difficult to observe, interval of BCL due to the steep
slopes in the spike. The appearance of rhythms through
the spike is well described by the theory of unimodal
maps (Stefan, 1977) and we merely leave it as a
suggestion that many of the rhythms that appear in this
range might be disappearing through the observed
Wenckebach rhythms (see Section 6). In particular, the
disappearance of the 3:2 rhythm at BCL=10.5 (Fig. 13)
indicates that a period three rhythm exists throughout a
large interval of BCL which has implications for the
existence of chaotic orbits (Li and Yorke, 1975).
6. Completing the bifurcation diagram

Now that the Wenckebach generating structure is
clear, it is possible to clarify the details of the bifurcation
diagram that were omitted in Fig. 13 by introducing a
simplified version of M: The following piecewise linear
map captures the essential components of the slow
manifold map in the Wenckebach regime (see Fig. 14).

MðxÞ ¼

M1ðxÞ ¼ �ax þ k; xp0;
M2ðxÞ ¼ x þ k; 0oxp1;
M3ðxÞ ¼ 1þ k; x > 1;

8><
>: ð6Þ

where a and k are parameters similar in their influence
to s and BCL, respectively, in that increasing a steepens
the transition (as does decreasing s) and decreasing k
(for ko0) increases the distance between the map and
the identity line (as does decreasing BCL).
This map allows for explicit calculation of entire

classes of solutions, in particular Wenckebach rhythms.
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Fig. 15 shows regions of existence and stability of
Wenckebach rhythms up to order 7:6 although the
sequence of higher order Wenckebach rhythms con-
tinues in the same manner with an accumulation of
rhythms as k-0 and a-N: This infinite sequence
would be truncated if the sharp tip were to be made
smooth, with the higher order rhythms being replaced
by a period doubling cascade. Note that for k > 0; the
1:1 rhythm (fixed point) is the only stable rhythm.
In Fig. 15 (top), for each NX2; there are two N þ 1 :

N rhythms to the right of the N � 1th the solid curve,
one stable and one unstable. Each solid curve represents
a fold bifurcation along which the pair appears. To the
right of the dashed curve, the stable rhythm goes
unstable but continues to exist until k ¼ 0: The dashed
curve represents a flip bifurcation, through which a
double Wenckebach rhythm arises: a 2ðN þ 1Þ : 2N
rhythm consisting of an alternating pair of similar but
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Fig. 15. Bifurcation diagrams for the piecewise linear map M: Top: regio
represents a fold bifurcation along which a pair of N þ 1 : N rhythms appear

bifurcation generating a 2ðN þ 1Þ : 2N rhythm. Two unstable N þ 1 : N rh

bifurcation diagram taken at a ¼ 10 and 3.5. The value of the largest iterate
rhythms, dashed lines are unstable. Note that all rhythms disappear at k ¼
Fig. 13.
not identical N þ 1 : N rhythms. See the appendix for
details on the boundaries of these regions.
It is worth noting that according to the Sarkovskii

sequence, at all parameter values between the leftmost
solid curve and k ¼ 0; there are periodic orbits of all
periods (Stefan, 1977). This follows from the fact that
3:2 rhythms, which exist throughout this region, are
period three orbits. The outlined regions merely pick out
the rhythms with Wenckebach structure.
A summary of the bifurcation diagram for the slow

manifold map is given in Fig. 16.
7. Discussion

Despite much success in explaining experimental
results from paced cardiac cells and tissue, the APD
map approach has certain drawbacks when particular
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. The stable rhythm loses stability along the dashed curve through a flip
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(x1; as given in the appendix) is plotted against k: Solid lines are stable
0; an artifact of the sharp corner in M: Compare the a ¼ 10 case with
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exist. The vertical line segments represent stable rhythms. Overlapping

line segments represent bistability, for example, in the fourth box from

the left, there is bistability of the 1:1 and 2:1 rhythms. Hash marks

represent flip and fold bifurcations. Gaps in the line segment (in the

first box) denote regions with more complicated rhythms. Note the

gradual appearance of the period doubling cascade exhibiting

bistability with the 2:1 rhythm and the lack of bistability in the

leftmost box. Wenckebach rhythms are believed to appear only after

the period doubling cascade is ‘‘complete’’ and a period three rhythm
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issues are addressed. For example, stability predictions
based on it are not consistent with experimental
observations in a quantitative sense, the map is some-
times not well defined (multivalued), and certain
observed rhythms cannot be explained by it. Further-
more, certain parameter dependence is left unexplained
(for example, stimulus amplitude) and, as a result, only
a partial bifurcation diagram can be constructed leaving
some questions unanswered (for example, what deter-
mines the transitional rhythms between 1:1 and 2:1
rhythms?). Nonetheless, as a first approximation, it is
remarkably useful in understanding the appearance and
stability structure of the most predominant rhythms
(1:1, 2:2, 2:1) and as a result it has been adopted and
generalized in an attempt to patch the holes in the
original formulation.
In this paper, an alternate map, which in a sense

generalizes the APD map, has been derived directly
from an ODE model allowing for more concrete
connections to cardiac physiology to be made. The
main drawback of the ODE model used in the
derivation is that it is not a physiological model and
hence does not provide the quantitative accuracy of
more detailed ionic models. Surprisingly, the FitzHugh–
Nagumo model, in one of its simplest manifestations,
can be reduced to a map that closely resembles the
traditional APD map, perhaps explaining some of the
quantitative failings of the APD map. Once this simplest
map is generalized to a second approximation (both
figuratively and in the sense of perturbation theory), a
more complete understanding of the bifurcation struc-
ture can be deduced.
But quantitative prediction based on this improved

map are still unlikely to be accurate simply because
FHN is not a physiological model and only describes
cardiac dynamics in a qualitative sense. Fortunately, the
approach taken in deriving the slow manifold map can
easily be generalized to a more detailed ionic model
based on a few simple assumptions that must be tested.
There are two generic structures that are almost
certainly present in any cardiac model. The first
structure is the slow manifold, along which the state of
a cell returns to rest. The second structure is what might
best be referred to as the excitation threshold manifold

which is the manifold that forms the boundary in state
space between the region of depolarization (dv=dt > 0)
and repolarization (dv=dto0).
In the FHN model, the slow manifold is one-

dimensional provided e is sufficiently small. In an ionic
model, the dimension of this manifold depends on the
details of repolarization and, in particular, the time
constants associated with the Ca2þ and Kþ channels.
Unfortunately, these time constants are not really
constant (due to transmembrane potential dependence)
so that careful study is required to determine the
dimension of this manifold. Provided this manifold is
one-dimensional, there is hope for constructing a one-
dimensional slow manifold map. If this manifold is two-
dimensional, it ought to be possible to parameterize it by
the transmembrane potential variable and one other state
variable. This second state variable can be thought of as a
memory variable allowing for the formal derivation of a
memory map analogous to those proposed by Chialvo
and Jalife (1990), Fox et al. (2002) and Otani and
Gilmour (1997). In either case, the approach provides a
rigorous means of deriving a more quantitative map,
whether it be one-, two- or higher-dimensional.
The second structure might loosely be referred to as

the excitation threshold. In the FHN model, the middle
branch of the v nullcline acts as an excitation threshold,
although it is not a true threshold in the sense of all or
none excitation, and provides the delay region which is
necessary for a non-monotonic, Wenckebach-generating
map. For the higher-dimensional ionic models, this
middle branch is a hypersurface of the full state space. If
one is interested in determining whether Wenckebach
rhythms exist for a given model, one must check to see if
the slow manifold, when shifted in the v direction by s

(the stimulus amplitude), intersects the threshold mani-
fold in such a way as to generate long delays.
The presence and characterization of these two state

space structures would provide a rigorous and mechan-
istic means of exploring the nature of Wenckebach
rhythms, elucidating the ionic basis of memory and
providing a quantitatively accurate map describing the
behavior of paced isolated cardiac cells.
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Appendix A

A.1. Derivation of the log map

Let us examine a theoretical excitable system in which
the APD assumption is valid. A similar system was
analysed by Othmer et al. in a series of papers that
examined existence and stability of 1:1, 2:2 and 2:1
rhythms (Othmer and Watanabe, 1994; Othmer and
Xie, 1999; Xie et al., 1996). We use a slightly simpler
system for the sake of illustrating some key ideas.
Consider the FHN ODE system with piecewise linear

dynamics:

e
dv

dt
¼ Hðv � aÞ � v � w;

dw

dt
¼ v; ðA:1Þ

whereH is the Heaviside function, e is a small parameter
and a is the excitation threshold. In the singular limit, as
e-0; the dynamics are restricted to the upper and lower
branches of the v nullcline given by v ¼ 1� w and v ¼
�w; respectively. The slow dynamics along those
branches are defined by

dw

dt
¼ 1� w;

dw

dt
¼ �w ðA:2Þ

on the upper and lower branch, respectively.
The experimental protocol calls for a periodic

stimulus to be applied to the cell which we interpret
here as the periodic addition of a delta function scaled
by the chosen stimulus amplitude, s; to the v equation.
This puts a jump discontinuity in v with an amplitude
exactly that of the stimulus (s). In general, the
poststimulus state of the system will not be on one of
the branches so we must appeal to the fast time scale to
determine the evolution. If the poststimulus value of v is
less than or equal to a; the state of the cell snaps back to
the lower branch. Otherwise, the state jumps to the
upper branch. In either case, the value of w is unchanged
from the prestimulus value.
As mentioned, we assume that BCL is sufficiently

large so that immediately preceding every stimulus the
state of the cell is on the lower branch. With this
assumption, we construct a map which gives the
successive positions of the state of the cell on the lower
branch immediately preceding successive stimuli. There
are three equivalent ways of keeping track of this
position, using successive values of either w; v or APD.
The singular limit assumption ensures that the cell spends
time only on the upper and lower branches and does not
spend time moving between the two. The times spent on
these branches are the APD and DI respectively. Solving
(A.2) allows us to calculate wnþ1 as a function of wn:

wnþ1 ¼
1� a

a
e�BCLð1� wnÞ:

Equivalently, this map can be expressed in terms of APD:

APDnþ1 ¼ hðDInÞ ¼ ln
1� ð1� aÞe�DIn

a

� �
;

where DIn ¼ BCL�APDn:
If we allow for the possibility that the cell does not

recover enough to fire after the first BCL, the cell has
DIn ¼ ðN þ 1Þ � BCL�APDn time units before firing
where N is the number of failed responses. The interval
of APD in which the cell skips N responses can be
calculated as a function of the stimulus amplitude, s; and
the threshold, a: The minimum DI which allows for a
response is the length of time it takes for the cell to
recover from w ¼ 1� a to w ¼ s � a: Thus, DImin ¼
lnðð1� aÞ=ðs � aÞÞ and the interval of APD for which the
cell fails to respond N times is given by JN ¼ ðN �
BCL�DImin; ðN þ 1Þ � BCL�DIminÞ:
Finally, if the time scale is allowed to differ on the

upper and lower branch of the piecewise linear right
hand side, the ratio of these time scales, Z; can be
introduced to the model by replacing the right hand side
of the first equation in (A.2) by ð1� wÞ=Z:We have also
neglected to give an absolute time scale, call it m; for the
map which is required if it is to be compared to
experimental results. With these final modifications, the
APD map is given by

APDnþ1 ¼ hðDInÞ ¼ mZ ln
1� ð1� aÞe�DIn=m

a

� �
; ðA:3Þ

where DIn ¼ ðN þ 1Þ � BCL�APDn and N is deter-
mined by satisfying APDnAJN : Due to its logarithmic
form, we refer to this map as the log map. Similar
functional forms have been derived in a similar manner
previously (Karma, 1994; Tolkacheva et al., 2002).
From its development in an experimental context, the

choice of APD as the argument for a map is appropriate
due to the constraints of measurement. However, a
theoretical approach has no such constraints. For the
sake of understanding the log map in light of develop-
ments in Section 4.1, it is more instructive to represent it
in terms of the transmembrane potential v:
With different time scales on the upper and lower

branches, the log map can be expressed as

vnþ1 ¼ �e�BCL=mð1� aÞ
1þ vn

a

� �Z

;

for vn > a � s: For vnoa � s; the stimulus does not elicit
a response and so

vnþ1 ¼ vne
�BCL=m:
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A.2. Log map parameter dependence

With the map expressed in terms of vn; we can easily
check the influence of the parameters on the stability of
the 1:1, 2:2 and 2:1 solutions. To simplify the analysis,
we consider the case Z ¼ 1:
If a fixed point exists on the first continuous segment

of the map,3 it must have the form

v� ¼ �
1

1þ ða=ð1� aÞÞeBCL
:

Of course, existence of such a fixed point requires that
s > a � v� that is, the stimulus is sufficiently large to
elicit a response. Solving for a condition on BCL,
existence of a fixed point is guaranteed for

eBCL >
1

s � a
� 1

� �
1� a

a
:

The stability of this fixed point is determined by the
slope of the map at the fixed point. Putting the condition
for stability into a convenient form, we find that stability
of the fixed point is guaranteed for

eBCL >
1� a

a
:

Thus, if s > a þ 1
2
then stability is lost before the fixed

point disappears and a branch of 2:2 rhythms emerges
from the bifurcation point (see Fig. 4).
Conversely, if soa þ 1

2
then the fixed point disappears

before stability is lost and no branch of stable 2:2
rhythms can exist. Thus, the log map agrees with the
observation of Yehia et al. (1999) that alternans appear
for large stimulus amplitude and are replaced by a direct
transition from 1:1 to 2:1 as s decreases, at least in the
case of Z ¼ 1: This result extends to the case of Za1
provided the 2:2 branch emerges from the fixed point
through a supercritical bifurcation.

A.3. Connections between the exponential and log maps

One of the failures of the exponential map, (1), is its
lack of quantitative agreement with experimental data
(Hall et al., 1999; Yehia et al., 1999). The log map, (A.3),
is qualitatively similar to the exponential map. In fact,
given APDmax; A; DImin and t for g it is not difficult to
find Z; s; m and a for h so that h is a good fit to g: Forcing
the two maps to have the same DImin and to satisfy

lim
DI-N

gðDIÞ ¼ lim
DI-N

hðDIÞ; ðA:4Þ

allows for the first two parameters to be expressed in
terms of m and a: The problem of fitting the log map to
the exponential map is reduced to minimizing the error
jjg � hjj over m and a: An example is given in Fig. 5.
3Fixed points on the second segment correspond to 1:0 subthreshold

responses. These high-frequency rhythms are beyond the range of

interest of this study.
With this fit in mind, the exponential map can be
evaluated in terms of the piecewise linear FHN model in
the limit e-0: When compared with the modern
spectrum of detailed ionic models (Beeler and Reuter,
1977; Courtemanche et al., 1998; Luo and Rudy, 1991,
1994), the FHN model fails to measure up as a
quantitative model. The added simplifications of piece-
wise linear dynamics and the singular limit assumption
are almost exclusively considered when purely analytical
results are sought, placing the model into the category of
‘‘strictly qualitative’’ by physiological standards. It is
not at all surprising that an APD map derived from such
a simplified model is limited to the realm of qualitative
explanations.
Appendix B

Recall the definition of the piecewise linear map given
in (6):

MðxÞ ¼

M1ðxÞ ¼ �ax þ k; xp0;
M2ðxÞ ¼ x þ k; 0oxp1;
M3ðxÞ ¼ 1þ k; x > 1:

8><
>: ðB:1Þ

In order to calculate Wenckebach rhythms, there are
four cases that must be considered. Each case can be
identified with a region of parameter space by writing
down the appropriate conditions on the successive iterates
of M: The following list includes a description of each
region along with inequalities that bound the region and
the value of the first iterate. The four cases are:

1. A stable N þ 1 : N Wenckebach rhythm with 1 beat
on the M3 interval, N � 1 beats on the M2 interval
and one beat on the M1 interval:

�k >
1þ a
aN � 1

; �ko
1

N � 1
;

x1 ¼ �a� aNk þ k:

2. A stable N þ 1 : N Wenckebach rhythm with 1 beat
on the M3 interval, N � 2 beats on the M2 interval
and two beats on the M1 interval:

�ko
a2 � 1

a2ðN � 1Þ � aþ 1
; �k >

1

N � 1
;

x1 ¼ a2 þ ða2ðN � 1Þ � aþ 1Þk:

3. An unstable N þ 1 : N Wenckebach rhythm with N

beats on the M2 interval and one beat on the M1

interval:

�ko
1þ a
aN � 1

; a > N;

x1 ¼ �
aN � 1
1þ a

k:
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4. An unstable N þ 1 : N Wenckebach rhythm with
N � 1 beats on the M2 interval and two beats on the
M1 interval:

�ko
a2 � 1

a2ðN � 1Þ � aþ 1
; a > N ;

x1 ¼ �
a2ðN � 1Þ � aþ 1

a2 � 1
k:
References

Beeler, G.W., Reuter, H.J., 1977. Reconstruction of the action

potential of ventricular myocardial fibers. J. Physiol. 268, 177–210.

Cherry, E.M., Fenton, F.H. Suppression of alternans and conduction

blocks despite steep apd restitution: electrotonic, memory and

conduction velocity restitution effects. Am. J. Physiol Heart Circ.

Physiol, 2004.

Chialvo, D.R., Jalife, J., 1990. Cardiac Electrophysiology: from Cell to

Bedside, On the non-linear equilibrium of the heart: locking

behavior and chaos in Purkinje fibers. 1st Edition. Saunders,

London, pp. 201–214.

Coombs, S., Osbaldestin, A.H., 2000. Period adding bifurcations and

chaos in a periodically stimulated excitable neural relaxation

oscillator. Phys. Rev. E 62, 4057–4066.

Courtemanche, M., Glass, L., Keener, J.P., 1993. Instabilities of a

propagating pulse in a ring of excitable media. Phys. Rev. Lett. 70,

2182–2185.

Courtemanche, M., Ramirez, R.J., Nattel, S., 1998. Ionic mechanisms

underlying human atrial action potential properties: insights from a

mathematical model. Am. J. Physiol. 275, H301–H321.

Cytrynbaum, E.M., Keener, J.P., 2002. Stability conditions for the

traveling pulse: modifying the restitution hypothesis. Chaos 12 (3),

788–799.

Delmar, M., Glass, L., Michaels, D.C., Jalife, J., 1989a. Ionic basis

and analytical solution of the wenckebach phenomenon in guinea

pig ventricular myocyte. Circ. Res. 65, 775–788.

Delmar, M., Michaels, D.C., Jalife, J., 1989b. Slow recovery of

excitability and the wenckebach phenomenon in the single guinea

pig ventricular myocyte. Circ. Res. 65, 761–774.

Echebarria, B., Karma, A., 2002. Instability and spatiotemporal

dynamics of alternans in paced cardiac tissue. Phys. Rev. Lett.

88(20) 208101-1–208101-4.

Elharrar, V., Surawicz, B., 1983. Cycle length effect on restitution of

action potential duration in dog cardiac fibers. Am. J. Physiol. 244,

H782–H792.

Fenton, F., Cherry, E.M., Hastings, H.M., Evans, S.J., 2002. Multiple

mechanisms of spiral wave breakup in a model of cardiac electrical

activity. Chaos 12 (3), 852–892.

Fox, J.J., Bodenschatz, E., Gilmour Jr., R.F., 2002. Period-doubling

instability and memory in cardiac tissue. Phys. Rev. Lett. 89(13)

138101-1–138101-4.

Gilmour Jr., R.F., 2002. Electrical restitution and ventricular

fibrillation: negotiating a slippery slope. J. Cardiovasc. Electro-

physiol. 13, 1150–1151.

Guevara, M.R., Ward, G., Shrier, A., Glass, L., 1984. Electrical

alternans and period-doubling bifurcations. In: Computers in

Cardiology. IEEE Computer Society, Silver Spring, MD,

pp. 167–170.

Guevara, M.R., Jeandupeux, D., Alonso, F., Morissette, N., 1989.

Wenckebach rhythms in isolated ventricular heart cells. In:
Pnevmatikos, St., Bountis, T., Pnevmatikos, Sp. (Eds.), Interna-

tional Conference on Singular Behavior and Nonlinear Dynamics,

1st Edition. Vol. 2. World Scientific Publishing Co. Pte. Inc.,

Singapore, pp. 629–642.

Hall, G.M., Bahar, S., Gauthier, D.J., 1999. Prevalence of rate-

dependent behaviors in cardiac muscle. Phys. Rev. Lett. 82 (14),

2995–2998.

Ideker, R.E., Rogers, J.M., Gray, R.A., 2002. Steepness of the

restitution curve: a slippery slope? J. Cardiovasc. Electrophysiol.

13, 1173–1175.

Karma, A., 1994. Electrical alternans and spiral wave breakup in

cardiac tissue. Chaos 4, 461–472.

Karma, A., 2000. New paradigm for drug therapies of cardiac

fibrillation. Proc. Natl. Acad. Sci. 97 (11), 5687–5689.

Lewis, T.J., Guevara, M.R., 1990. Chaotic dynamics in an ionic model

of the propagated cardiac action potential. J. Theor. Biol. 146,

407–432.

Li, T., Yorke, J.A., 1975. Period three implies chaos. Am. Math.

Monthly 82 (10), 985–992.

Luo, C.H., Rudy, Y., 1991. A model of the ventricular cardiac action

potential; depolarization, repolarization and their interaction. Circ.

Res. 68, 1501–1526.

Luo, C.H., Rudy, Y., 1994. A dynamic model of the cardiac

ventricular action potential; I: simulations of ionic currents and

concentration changes. Circ. Res. 74, 1071–1096.

Nolasco, J.B., Dahlen, R.W., 1968. A graphic method for the study of

alternation in cardiac action potentials. J. Appl. Physiol. 25 (2),

191–196.

Otani, N.F., Gilmour Jr., R.F., 1997. Memory models for the electrical

properties of local cardiac systems. J. Theor. Biol. 187 (3), 409–436.

Othmer, H.G., Watanabe, M., 1994. Resonances in excitable systems

under step-function forcing. i. harmonic solutions. Adv. Math. and

Appl. 4, 399–441.

Othmer, H.G., Xie, M., 1999. Subharmonic resonance and chaos in

forced excitable systems. J. Math. Biol. 39, 139–171.

Panfilov, A.V., Zemlin, C.W., 2002. Wave propagation in an excitable

medium with a negatively sloped restitution curve. Chaos 12 (4),

800–806.

Qu, Z., Weiss, J.N., Garfinkel, A., 1997. Spatiotemporal chaos in a

simulated ring of cardiac cells. Phys. Rev. Lett. 78 (7), 1387–1390.

Stefan, P., 1977. A theorem of sarkovskii on the existence of periodic

orbits of continuous endomorphisms of the real line. Commun.

Math. Phys. 54, 237–248.

Tolkacheva, E.G., Schaeffer, D.G., Gauthier, D.J., Mitchell, C.C.,

2002. Analysis of the fenton karma model through an approxima-

tion by a one-dimensional map. Chaos 12 (4), 1034–1042.

Tolkacheva, E.G., Schaeffer, D.G., Gauthier, D.J., Krassowska, W.,

2003. Condition for alternans and stability of the 1:1 response

pattern in a memory model of paced cardiac dynamics. Phys. Rev.

E 67, 031904-1–031904-10.

Watanabe, M., Otani, N.F., Gilmour Jr., R.F., 1995. Biphasic

restitution of action potential duration and complex dynamics in

ventricular myocardium. Circ. Res. 76, 915–921.

Xie, M., Othmer, H.G., Watanabe, M., 1996. Resonance in excitable

systems under step-function forcing. ii. subharmonic solutions and

persistence. Physica D 98, 75–110.

Yehia, A.R., Shrier, A., Lo, K.C.-L., Guevara, M.R., 1997. Transient

outward current contributes to wenkebach-like rhythms in isolated

rabbit ventricular cells. Am. J. Physiol. 273, H1–H11.

Yehia, A.R., Jeandupeux, D., Alonso, F., Guevara, M.R., 1999.

Hysteresis and bistability in the direct transition from 1:1 to 2:1

rhythm in periodically driven single ventricular cells. Chaos 9 (4),

916–931.


	Periodic stimulus and the single cardiac cell-getting more out of 1D maps
	Introduction
	An experimental bifurcation diagram
	The one-dimensional APD iteration model
	Building a better map
	The slow manifold map

	Numerical representation of the map
	Completing the bifurcation diagram
	Discussion
	Acknowledgements
	Derivation of the log map
	Log map parameter dependence
	Connections between the exponential and log maps

	References


