(1)

$$
\begin{aligned}
f(x) & =\left(1+\frac{1}{x}\right)^{x} \\
\ln (f(x)) & =\ln \left(\left(1+\frac{1}{x}\right)^{x}\right) \\
\ln (f(x)) & =x \ln \left(1+\frac{1}{x}\right) \\
\frac{f^{\prime}(x)}{f(x)} & =\frac{d}{d x}\left(x \ln \left(1+\frac{1}{x}\right)\right) \\
\frac{f^{\prime}(x)}{f(x)} & =\ln \left(1+\frac{1}{x}\right)+x \cdot \frac{1}{1+\frac{1}{x}}\left(-x^{-2}\right) \\
\frac{f^{\prime}(x)}{f(x)} & =\ln \left(1+\frac{1}{x}\right)-\frac{x}{x^{2}+x} \\
f^{\prime}(x) & =f(x)\left(\ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right) \\
f^{\prime}(x) & =\left(1+\frac{1}{x}\right)^{x}\left(\ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right)
\end{aligned}
$$

$(2)$

$$
\begin{aligned}
g(x) & =(\ln (x))^{x^{2}} \\
\ln (g(x)) & =x^{2} \ln (\ln (x)) \\
\frac{g^{\prime}(x)}{g(x)} & =2 x \ln (\ln (x))+x^{2} \frac{1}{\ln (x)} \cdot \frac{1}{x} \\
g^{\prime}(x) & =g(x)\left(2 x \ln (\ln (x))+\frac{x}{\ln (x)}\right) \\
g^{\prime}(x) & =(\ln (x))^{x^{2}}\left(2 x \ln (\ln (x))+\frac{x}{\ln (x)}\right)
\end{aligned}
$$

5) $1 . \ldots-1 \cdot 10, .1$
(3)

$$
\begin{aligned}
& h(x)=\frac{\sin ^{10}(x)}{(5 x+3)^{6}} \quad \begin{array}{l}
\text { could use } \\
\text { quotient rule. }
\end{array} \\
& \ln (h(x))=\ln \left(\sin ^{10}(x)\right)-\ln \left((5 x+3)^{6}\right) \\
& \ln (h(x))=10 \ln (\sin (x))-6 \ln (5 x+3) \\
& \frac{h^{\prime}(x)}{h(x)}=10 \cdot \frac{1}{\sin (x)} \cdot \cos (x)-6 \cdot \frac{1}{5 x+3} \cdot 5 \\
& h^{\prime}(x)=h(x)\left(10 \frac{\cos (x)}{\sin (x)}-\frac{30}{5 x+3}\right) \\
& h^{\prime}(x)=\frac{\sin ^{10}(x)}{(5 x+3)^{6}}\left(10 \frac{\cos (x)}{\sin (x)}-\frac{30}{5 x+3}\right)
\end{aligned}
$$

