A summary of:

“Expert and Novice Approaches to Reading Mathematical Proofs”

Matthew Inglis and Lara Alcock
Journal for Research in Mathematics Education, vol 43, 358-390
Background

• Who are these people?

• Why isn’t the title “Expert and novice approaches to validating mathematical proofs”?
 • Because most studies on reading proofs have actually focused on validating proofs.
Part 1 – Giant Literature Review

- Review lit. on how experts and novices judge proof validity
 - Novices do poorly when judging the validity of proofs, often no better than chance (Selden & Selden 2003; Alcock & Weber 2005).
 - Note: Also true for judging the validity of single statements (ex. Math 220)
 - Past studies (Selden and Selden 2003) and general belief is that, in contrast, experts exhibit “uniform agreement” about the validity of proofs.
 - Recently, there is some (tentative) disagreement on this, i.e. even experts may not uniformly agree whether a proof is valid or invalid (Weber 2008)

 Research Question 1: Do research mathematicians typically agree on the validity of purported proofs?
Part 1 – Giant Literature Review

- Discuss theoretical ideas for why student difficulties occur
 - Students may not understand what constitutes a proof (Coe & Ruthven, 1994; Harel & Sowder, 1998)
 - Recent research (Weber, 2010) suggests that “high-achieving” students did not have this misconception, and it is more likely that these students are unskilled at validating deductive arguments
 - Students devote attention to surface features, rather than attending to the underlying logical structures of proofs (Selden & Selden, 2003).

Research Question 2: When validating proofs, do experts and novices attend to different parts of purported proofs to different degrees?
Part 1 – Giant Literature Review

- Review the literature on how successful validation may be done
 - Two broad strategies based on introspection by experts (Weber & Mejia-Ramos, 2011):
 - “zooming-in”: filling in gaps between successive statements
 - Warrant: a justification that allows the reader to conclude that the statement follows from a subset of the previous lines and known axioms
 - Warrants may be implicit: the reader needs to
 - (a) decide when a warrant is required,
 - (b) infer the implicit warrant intended by the author and
 - (c) evaluate the validity of the warrant.
Part 1 – Giant Literature Review

- Review the literature on how successful validation may be done
 - Two broad strategies based on introspection by experts (Weber & Mejia-Ramos, 2011):
 - “zooming-out”: decompose a proof into methodological moves (cohesive strings of logical derivations that form chunks of the whole argument) and evaluate whether these moves fit together to imply the theorem.

Research Question 3: Is there evidence of these two distinct strategies for proof validation? If so, are there expert/novice differences in frequency or sophistication of use of these strategies?
Part 1 – Giant Literature Review

- Last: Discuss methodological difficulties in studying reading/validating proofs
 - Previously there have been two major approaches to studying proof validation:
 - 1. introspective reports by experts:
 - 2. Think-aloud protocols:
 - Problems with *reactivity*: verbalizing thoughts can alter behaviour (for better or worse)
 - Problems with *veridicality*: the accuracy of self-reports (may omit crucial components, or may report elements that did not actually occur)

- Motivate their use of eye-tracking technology
What did they actually do?

- 18 undergrads (50% male), completed 2 semesters of proof-based calculus and linear algebra

- 12 research mathematicians (83% male)

- Read proofs on computer screens while eye-tracking technology (embedded in screen) tracked the lines they focused on.

- 3 phases:
 - 4 “student-generated” proofs of the same theorem (Proofs 1-4 in appendix), judge validity, estimate confidence in response
 - “Break”: read two short nonmathematical passages from newspapers.
 - 2 proofs “submitted to a math journal” (Proofs 5-6 in appendix), judge validity, estimate confidence in response (?)
Research Question 1:

- Do research mathematicians typically agree on the validity of purported proofs?
- Got 12 experts (research mathematicians) to judge the validity of 6 proofs in number theory.
 - Uniform agreement on 3 of them (proofs 1, 4, and 6 – all invalid)
 - Disagreement on remaining 3.

Conclusion: Experts do not agree uniformly on what constitutes a valid proof. It may depend instead on the social context in which the proof is read, or other factors.
Research Question 1:

Table 1

Responses to the Six Arguments, Showing Frequencies of Valid and Invalid Responses, for Each Group

<table>
<thead>
<tr>
<th></th>
<th>P1*</th>
<th>P2</th>
<th>P3</th>
<th>P4*</th>
<th>P5</th>
<th>P6*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematicians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Invalid</td>
<td>12</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Undergraduates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>11</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Invalid</td>
<td>9</td>
<td>7</td>
<td>14</td>
<td>7</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

Note. * indicates that the difference between the responses of the two groups reached significance (Fisher's Exact Test).
Research Question/Goal 2:

- Do experts and novices attend to different parts of purported proofs to different degrees? ex. Do novices spend proportionately longer focusing on surface features?

- Fig. 1. → Yes. Undergraduates spent 55% of time on formulae, experts spent 45% of time.

- Fig. 3 & 4 → Experts made approx. 50% more between-line saccades than undergraduates. (moved back and forth between consecutive lines more).

- Fig. 4. → Experts had more transitions between lines that required a warrant (ex. L3-L4, L4-L5)

 (on avg. experts made 14.9 more warrant-seeking sequences when a warrant was required, undergrads made only 5.0 more when required)
Theorem. There are infinitely many primes that can be written as $4k + 1$ (where $k \in \mathbb{Z}$).

Proof. Suppose there are finitely many primes of the form $4k + 1$.

Then these primes can be listed $p_1, p_2, p_3, \ldots, p_n$.

Define a number a as follows. Let $a = p_1p_2p_3 \cdots p_n + 4$.

Note that dividing a by 4 leaves remainder 1.

Every number that leaves remainder 1 when divided by 4 is divisible by a prime that also leaves remainder 1 when divided by 4.

Hence, for all k such that $L_k \in \mathbb{Z}$.
Research Question/Goal 3:

- Is there evidence for two distinct strategies (zooming out, vs. zooming-in) for proof validation? If so, are there expert/novice differences in the frequency or sophistication of use?

- Examined “first-fixation time” for each line

- Found no significant difference between expert and undergraduate times. (fig. 2)
Research Implications

- Having experts reflect on their practices may not lead to a valid understanding of that practice
 - The validity of proofs is not uniformly accepted/rejected
 - Experts do not “zoom-out” as self-reported

→ to teach students expert behaviour, experiments need to be done to determine what is “expert behaviour”, even on concepts or issues that appear to be “uniformly” understood or accepted.
Educational Implications

- We know that students’ validation procedures differ from those of experts in the following ways:
 - Undergraduate students do not reliably distinguish invalid proofs, even in those cases where experts agreed uniformly.
 - Undergrads spend proportionately more time on formulae (surface features).
 - Undergrads “zoom-in” less than experts – experts devote more effort to inferring implicit between-line warrants.

- What can we do to change this?
 - **1. Self-explanation (ex. Chi et al., 1994)**
 - Develop materials that encourage students to (a) decide when a warrant is required (b) infer an appropriate warrant and (c) evaluate the inferred warrant
 - **2. Write proofs differently to aid validation attempts.**
 - Ex. Reduce symbolism, formulas, etc.
 - This needs to be done carefully, to train students up to read genuine proofs.