Today: look at the relationship between instantaneous velocity (or instantaneous rate of change of a function) and tangent lines. Introduce the idea of limit of a function.

Last time:
we observed that computing average velocity over a time interval \([t_1, t_2]\) corresponds to computing the slope of line that goes through the points \((t_1, f(t_1))\) and \((t_2, f(t_2))\). We call this line the secant line.

Suppose we can fit a curve through the data points, \(y = f(t)\).
consider a time interval \([t_0, t_1]\)

slope between \(P\) and \(Q\)

\[
m = \frac{f(t_1) - f(t_0)}{t_1 - t_0}
\]

this equals average velocity over the interval \([t_0, t_1]\)

As we shorten \(\Delta t = t_1 - t_0\),
the point \(Q\) gets closer to \(P\).

the slope \(m = \frac{f(t_1) - f(t_0)}{t_1 - t_0}\) of secant line
becomes the slope of tangent line.
In other words,
as t gets closer to t_0,
Q gets closer to P,
the secant line through P and Q
becomes the line that touches
the curve at P which we call
tangent line. P is the point of
tangency.

So the process of estimating the
instantaneous velocity at $(t, f(t_0))$
corresponds to estimating
the slope of the tangent line
to the curve $y = f(t)$ at $(t_0, f(t_0))$.

We expect the velocity at t_0 to be
the slope of the tangent line
at $(t_0, f(t_0))$.
By shortening Δt to be close to 0, we compute the slope of secant lines that get close to tangent line.

In the limiting case, we get exactly the slope of the tangent line.

$$\lim_{t_1 \to t_0} \left(\frac{f(t_1) - f(t_0)}{t_1 - t_0} \right) = \text{slope of tangent line at } (t_0, f(t_0))$$

equivalently

$$\lim_{t_1 \to t_0} \left(\frac{f(t_1) - f(t_0)}{t_1 - t_0} \right) = \text{velocity at } t = t_0$$
Notation:

\[t_1 = t_0 + h \]

where \(h \) is a small number, either positive or negative.

Then, the slope of the secant line through \(P \) and \(Q \) is:

\[
m = \frac{f(t_0 + h) - f(t_0)}{t_0 + h - t_0} = \frac{f(t_0 + h) - f(t)}{h}
\]

Then:

\[
\lim_{h \to 0} \left(\frac{f(t_0 + h) - f(t_0)}{h} \right) = \text{velocity at } t_0 = \text{slope of tangent line at } (t_0, f(t_0))
\]
Limit of a function

\[\lim_{x \to a} f(x) \]

reads "the limit of \(f \) as \(x \) approaches \(a \)."

This describes the behaviour of a function \(f \) when the independent variable \(x \) gets closer and closer to some number "\(a \)."

\[y = f(x) \]

\[\lim_{x \to 2} f(x) = ? \]

as \(x \) gets closer and closer to 2, \(f(x) \) gets closer to \(\frac{1}{2} \).

So we say

\[\lim_{x \to 2} f(x) = \frac{1}{2} \]
Today:
* describe the meaning of \(\lim_{x \to a} f(x) = L \)
* evaluate limits at a point using substitution property or algebraic manipulations

Last time: Introduced the concept of limit of a function.

\(\lim_{x \to a} f(x) = L \) means that we can make \(f \) be as close as we like to \(L \) by taking values of \(x \) close to "\(a \)"

\[
\begin{array}{c|c}
X & \frac{1}{X} \\
1.99 & 0.5025... \\
1.999 & 0.50025... \\
2.01 & 0.4975... \\
2.001 & 0.4997... \\
\end{array}
\]

\(\lim_{x \to 2} \frac{1}{x} = \frac{1}{2} \)
Observation #1:

The exact value $f(a)$ is irrelevant when computing $\lim_{x \to a} f(x)$.

- $f(a) = 2$, $\lim_{x \to 2} f(x) = 3$
- $f(a) = 4$, $\lim_{x \to 2} f(x) = 3$
- $f(a)$ is undefined, $\lim_{x \to 2} f(x) = 3$
\[
\lim_{{x \to 4}} g(x) = 1
\]
\[
g(6) = 3
\]

\[
\lim_{{x \to 6}} g(x) = \text{does not exist (DNE)}
\]

because we cannot make \(f(x) \) get closer to a specific number by taking \(x \)-values close to 6 (on both sides of 6).

Observation #2: if we cannot make \(f(x) \) approach a specific number \(L \) by taking values of \(x \) close to \(a \), we say that \(\lim_{{x \to a}} f(x) = \text{DNE} \).
How to evaluate limits

For most functions, \(\lim_{x \to a} f(x) \) can be evaluated directly by plugging "a" into \(f \).

Ex: \(\lim_{x \to 8} x^2 = 64 \)

\(\lim_{x \to 3} \sqrt{x^2+1} = \sqrt{10} \)

This is called "Substitution property".

Substitution works whenever \(f(x) \) is defined at \(x = a \)

\(\lim_{x \to 3} \frac{1}{x-1} = \frac{1}{3-1} = \frac{1}{2} \)

\(\lim_{x \to 0} \frac{|x|}{\sqrt{1-x^2}} = \frac{0}{\sqrt{1}} = 0 \)
What if \(f(a) \) is undefined?

Case 1

E.g. \(\lim_{x \to 2} \frac{x^2 - 4}{x - 2} \)

\[
\frac{x^2 - 4}{x - 2} \text{ is undefined at } x = 2
\]

Strategy: manipulate the function and simplify.

E.g. \[
\frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{x - 2} = x + 2
\]

allowed because \(x \neq 2 \)

can rewrite the limit as:

\[
\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2)
\]

\(= 4 \)
Examples

1) \(\lim_{x \to -2} \frac{x^2 + 2x}{x^2 - 4} = \lim_{x \to -2} \frac{x(x+2)}{(x-2)(x+2)} = \lim_{x \to -2} \frac{x}{x-2} = \frac{-2}{-2-2} = \frac{1}{2} \)

 because \(x \neq -2 \)

2) \(\lim_{t \to 0} \frac{3t + 4t^2}{t - t^2} = \lim_{t \to 0} \frac{x(3+4t)}{t(1-t)} = \lim_{t \to 0} \frac{3+4t}{1-t} = \frac{3+0}{1-0} = 3 \)

 because \(t \neq 0 \)

3) \(\lim_{x \to 2} \frac{x^4 - 16}{x^3 - 8} = \)

 Recall: \(a^2 - b^2 = (a+b)(a-b) \) \(<\) memorize this.

 \(a^4 - b^4 = (a^2)^2 - (b^2)^2 = (a^2 - b^2)(a^2 + b^2) \)

 \(= (a+b)(a-b)(a^2 + b^2) \)

 do not memorize this
\[
\lim_{x \to 4} \frac{x^4 - 16}{x^3 - 8} = \lim_{x \to 4} \frac{(x^2 - 4)(x^2 + 4)}{x^3 - 8} \\
= \lim_{x \to 4} \frac{(x - 2)(x + 2)(x^2 + 4)}{x^3 - 8}
\]

Recall

\[a^3 - b^3 = (a - b)(a^2 + ab + b^2)\]

back to limit

\[
\lim_{x \to 2} \frac{x^4 - 16}{x^3 - 8} = \lim_{x \to 2} \frac{(x - 2)(x + 2)(x^2 + 4)}{(x - 2)(x^2 + 2x + 4)}
\]

\[
= \frac{(2 + 2)(2^2 + 4)}{2^2 + 2 \cdot 2 + 4} = \frac{8}{12} = \frac{2}{3}
\]
From Q1

\[f(x) = \begin{cases}
-x^2 + x + 2 & x < 1 \\
-x + 6 & x > 1
\end{cases} \]

\(f(1) \) is undefined

Domain: all \(x \neq 1 \)

\[-x^2 + x + 2 = 0\]
\[-(x^2 - x - 2) = 0\]
\[-(x - 2)(x + 1) = 0\]
\(x = 2 \)
\(x = -1 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1 + 1 + 2 = 2</td>
</tr>
<tr>
<td>0</td>
<td>-2 + 6 = 4</td>
</tr>
<tr>
<td>1</td>
<td>-1 + 6 = 5</td>
</tr>
</tbody>
</table>

\(-x + 6 = 0 \)
\(x = 6 \)

don't
for piecewise functions:
1) indicate and label intercepts
2) complete graph for "all" x-values
3) make sure your graph is the graph of a function:
4) make a table of values.
Today: 1) Interpret the meaning of \(\lim_{x \to a} f(x) = 0 \)
2) Compute one-sided limits

Last time: How to evaluate limits.

Substitution Property:
if \(f(a) \) is defined, in most cases \(\lim_{x \to a} f(x) = f(a) \)

This is true if \(f(x) \) is polynomial function
rational function
for some piecewise functions

What if \(f(a) \) is undefined?

Case 1: use algebraic manipulation
to simplify the function

\[
\lim_{x \to \sqrt{2}} \frac{x - 2}{x - \sqrt{2}} = \lim_{x \to \sqrt{2}} \frac{(x - \sqrt{2})(x + \sqrt{2})}{x - \sqrt{2}} = 2\sqrt{2}
\]
\[
\lim_{x \to 0} \frac{1}{x^2} = ?
\]

```
<table>
<thead>
<tr>
<th>x</th>
<th>(1/x^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>0.01</td>
<td>10000</td>
</tr>
<tr>
<td>0.001</td>
<td>1000000</td>
</tr>
<tr>
<td>-0.1</td>
<td>100</td>
</tr>
<tr>
<td>-0.01</td>
<td>10000</td>
</tr>
<tr>
<td>-0.001</td>
<td>1000000</td>
</tr>
</tbody>
</table>
```

As \(x\) gets close to 0, \(f(x)\) grows

\[
\lim_{x \to 0} x + \sqrt{2} = \sqrt{2} + \sqrt{2} = 2\sqrt{2}
\]
we cannot make \(f(x) \) get close to a specific number. So we say \(\lim_{x \to 0} \frac{1}{x^2} \) does not exist.

More specifically, \(f(x) \) grows very large as \(x \) gets closer and closer to 0, so we say \(\lim_{x \to 0} \frac{1}{x^2} = \infty \) (not a number).

Similarly, \(\lim_{x \to 0} \frac{-1}{x^2} = -\infty \) (a very large negative quantity).
In general, when \[\lim_{x \to a} f(x) = \infty \text{ or } -\infty \]
we say that \(f(x) \) has a vertical asymptote at \(x = a \).

\[\lim_{x \to a} f(x) = \infty \]

\[\downarrow \text{ vertical line } x = a. \]

Ex: \[\lim_{x \to 2} \frac{x^2 - 4}{(x-2)^3} = \lim_{x \to 2} \frac{(x-2)(x+2)}{(x-2)^3} = \]

\[\lim_{x \to 2} \frac{x+2}{(x-2)^2} = \infty \]

\[\begin{array}{c|c}
 x & \frac{(x+2)}{(x-2)^2} \\
\hline
 2.01 & 4.01 / (0.01)^2 = 401000 \text{ grows large} \\
 2.001 & 4.001 / (0.001)^2 = 4001000 \text{ grows large} \\
 1.99 & 3.99 / (-0.01)^2 = 39900 \text{ grows large} \\
 1.999 & 3.999 / (-0.001)^2 = 399900 \text{ grows large} \\
\end{array} \]
One-sided limits

$$\lim_{x \to a^+} f(x)$$
right-end limit

$$\lim_{x \to a^-} f(x)$$
left-end limit.

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$\lim_{x \to 1} f(x) = \text{DNE}$$
this is not $$\infty$$
But \(\lim_{x \to 0} \frac{1}{x} = \text{DNE} \)