WORKSHOP 1.3
Solutions

Part A

There are two ways to solve this problem, whether the side we consider the length is parallel or perpendicular to the river. I added a figure for the former case.
First we set the dimensions of the rectangle as x for the length and y for the height. We know that the area of the rectangle is expressed as
$$A = xy.$$ However we need an expression of x only. We know that the sum of the lengths of the three sides must be 240 m. So we have
$$240 \text{ m} = x + 2y.$$ We are required to find a formula of x only, so we may solve for y:
$$y = \frac{240 \text{ m} - x}{2}.$$ Finally we can substitute back in the area formula to obtain
$$A(x) = \frac{240 \text{ m}x - x^2}{2}.$$ If we assume that the length is perpendicular to the river we obtain $y = 240 \text{ m} - 2x$ and $A(x) = 240 \text{ m}x - 2x^2$.

Part B

First we draw the diagram of our window.
We note that the window has two main dimension: its width x and the height of its rectangle section y. The area is computed by adding the area of the bottom rectangle and that of the half disk on top.
$$A = xy + \frac{\pi r^2}{2}.$$ Once again we need to replace y in that expression as we want a formula involving only x. We use the perimeter of 10 m provided.
$$10 \text{ m} = 2y + x + \frac{\pi x}{2}$$
We can solve for y:
$$y = \frac{10 \text{ m} - \left(1 + \frac{\pi}{2}\right)x}{2}.$$
Finally we substitute back into our area formula:

\[A(x) = \frac{10 \text{ m} \cdot x - (1 + \frac{x}{2}) \left(\frac{x}{2} \right)^2}{2} \]

Part C

The first step is to draw the diagram of the poster.

We define the the total width as \(x \) and the total height as \(y \). We know that the total area must be 1000 cm\(^2\):

\[1000 \text{ cm}^2 = xy. \quad (1) \]

We then need to compute the printable area. That is the total area minus the area of each corner and margin rectangles:

\[PA = 1000 \text{ cm}^2 + 4 \cdot 35 \text{ cm}^2 - 2x \cdot 7 \text{ cm} - 2y \cdot 5 \text{ cm}. \]

We add \(4 \cdot 35 \text{ cm}^2 \) in the formula because we removed each corner twice. We need to find an expression as a function of one side’s length only so we use the total area formula (1) and solve for \(y \):

\[y = \frac{1000 \text{ cm}^2}{x}. \]

Finally we substitute back into our printable area formula:

\[PA(x) = 1000 \text{ cm}^2 + 4 \cdot 35 \text{ cm}^2 - 2x \cdot 7 \text{ cm} - 2 \frac{1000 \text{ cm}^2}{x} \cdot 5 \text{ cm}. \]
The domain of our printable formula is the set of all possible widths x that could produce a poster. If we just consider the fact that we need side margins of 5 cm, the minimal width would be 10 cm. For the maximal width we set the height to 14 cm, the minimal height and the width should be $\frac{1000 \text{ cm}^2}{14 \text{ cm}}$. The domain is thus the interval $[10 \text{ cm}, \frac{1000 \text{ cm}^2}{14 \text{ cm}}]$.

For the bonus question. We first need to find a formula for the output per tree as a function of n. To do this we find the formula of the line that goes through $(50, 350)$ with a slope of -10. We can use the point-slope method to find this:

$$UO = -10(n - 50) + 350.$$

The total output is simply the output per tree times the total number of trees.

$$TO = -10n(n - 50) + 350n.$$