Science One Mathematics

This exam has 10 questions on 11 pages, for a total of 76 points.

Duration: 150 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; for changes of variables state how the variables are related. For integration by parts, state what the parts are. Answers without justifications will not be accepted.
- Continue on blank pages if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

First name: \qquad Last name: \qquad

Student \#: \qquad Bamfield \#: \qquad

Signature: \qquad

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	8	12	8	6	6	8	8	8	8	4	76
Score:											

8 marks

1. Determine whether each of the following statements is true or false. Provide justification (either an explanation or a counterexample).
(a) True/False. $\frac{d}{d y} \int_{0}^{y} x f(u) d x=y f(y)$, where f is continuous for all reals.
(b) True/False. $\int_{-1}^{1} \frac{d x}{x^{2}}=\left[-\frac{1}{x}\right]_{-1}^{1}=-2$.
(c) True/False. $\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}=\frac{1}{x}$ for $0<x<2$.
(d) True/False. If $\sum_{n=0}^{\infty} a_{n}$ diverges then $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
2. Compute the following integrals.
(a) $\int_{0}^{\pi / 2} \sqrt{1+\sin ^{2}(x)} \sin (x) \cos (x) d x$
(b) $\int \frac{1}{t^{2}+2 t+3} d t$
(c) $\int \frac{\ln (\ln (y))}{y} d y$

8 marks
3. Determine whether each series converges. Justify your answer, by stating which test you are using. You may use known facts about the convergence of geometric series and p-series.
(a) $\sum_{n=1}^{\infty} \frac{1}{3+e^{-n}}$
(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{3 n^{2}+n}$
(c) $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\cdots$
(d) $\sum_{k=1}^{\infty} \frac{k^{100} 100^{k}}{k!}$
4. (a) Find the area of the region to the right of the y-axis that is bounded by the graphs $y=x^{2}$ and $y=6-x$.
(b) Find the x-coordinate of the centroid of the region described in part (a).

6 marks
5. The profile of a tank is obtained by rotating the region described in the previous question (the region to the right of the y-axis that is bounded by the graphs $y=x^{2}$ and $y=6-x$) about the y-axis. What is the work done against gravity to fill the tank to the top with a fluid of density ρ (in $\mathrm{kg} / \mathrm{m}^{3}$). Assume the fluid is taken from a reservoir at ground level. Let g be the acceleration due to gravity.
6. Find the volume of the "elliptical doughnut" swept out when the area inside the ellipse $4(x-1)^{2}+y^{2}=1$ is rotated about the y-axis.

8 marks
7. Suppose the distance $R \geq 0$ of a quantum particle from a certain point is a random variable described by the probability density function

$$
f(r)=\frac{2}{\sqrt{\pi}} e^{-r^{2}}
$$

(a) Write (but do not evaluate) an integral giving the probability that the particle is a distance no more than 1 from the point.
(b) Find the mean distance of the particle from the point.
(c) Find an infinite series expression for the probability in part (a).

8 marks
8. Suppose the population $P(t)$ of some species, as a function of time t, is governed by an ODE initial value problem

$$
\frac{d P}{d t}=-k P(P-A)(P-B), \quad P(0)=P_{0}
$$

for some constants $k>0,0<A<B$, and $P_{0} \geq 0$.
(a) Without solving the equation, determine $\lim _{t \rightarrow \infty} P(t)$. Your answer will depend on the value of P_{0}.
(b) Give a brief biological interpretation of each of the constants A and B.
(c) If $k=1, A=1, B=2, P_{0}=\frac{3}{2}$, solve the ODE to obtain an implicit relation between P and t.
9. Determine (with justification) whether each of the improper integrals converges or diverges. If it converges, compute its value.
(a) $\int_{0}^{\infty} \frac{1}{e^{x}+e^{-x}} d x$.
(b) $\int_{-\infty}^{+\infty} \frac{x+1}{x^{2}+1} d x$.

4 marks 10. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[3]{1}+\sqrt[3]{2}+\sqrt[3]{3}+\cdots+\sqrt[3]{n}}{n^{4 / 3}}
$$

by first finding a function f such that the limit is equal to

$$
\int_{0}^{1} f(x) d x
$$

