Science One Math

March 27, 2019

Our goal: go back from numbers to functions!

Our goal today is to build an infinite series to represent a function

Starting point: a geometric series $\sum_{j=1}^{\infty} a r^{j-1}=\sum_{i=0}^{\infty} a r^{i}$

Why a geometric series? Because the geometric series converges to a wellknown sum (for an appropriate choice of the "ratio" r)

$$
\sum_{i=0}^{\infty} a r^{i}=\frac{a}{1-r} \quad \text { provided }|r|<1
$$

Examples of geometric series

$$
\begin{aligned}
& 3+3 \cdot \frac{2}{3}+3 \cdot \frac{4}{9}+3 \cdot \frac{8}{27}+\cdots=\sum_{n=0}^{\infty} 3\left(\frac{2}{3}\right)^{n} \\
& 2+\frac{4}{3}+\frac{8}{9}+\frac{16}{27}+\cdots=\sum_{n=0}^{\infty} 2\left(\frac{2}{3}\right)^{n}
\end{aligned}
$$

$1+a+a^{2}+a^{3}+\cdots=\sum_{n=0}^{\infty} a^{n}$ where a is a constant
$1-\frac{1}{2}(b-2)+\frac{1}{4}(b-2)^{2}-\frac{1}{8}(b-2)^{3} \ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{(b-2)^{n}}{2^{n}}$
where b is a constant

Examples of geometric series

$$
\begin{aligned}
& 3+3 \cdot \frac{2}{3}+3 \cdot \frac{4}{9}+3 \cdot \frac{8}{27}+\cdots=\sum_{n=0}^{\infty} 3\left(\frac{2}{3}\right)^{n} \\
& 2+\frac{4}{3}+\frac{8}{9}+\frac{16}{27}+\cdots=\sum_{n=0}^{\infty} 2\left(\frac{2}{3}\right)^{n} \\
& 1+a+a^{2}+a^{3}+\cdots=\sum_{n=0}^{\infty} a^{n} \text { where } a \text { is a constant } \\
& 1-\frac{1}{2}(b-2)+\frac{1}{4}(b-2)^{2}-\frac{1}{8}(b-2)^{3} \ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{(b-2)^{n}}{2^{n}} \\
& \text { where } b \text { is a constant }
\end{aligned}
$$

\boldsymbol{a} and \boldsymbol{b} are PARAMETERS \Leftrightarrow If we treat the parameter as a variable, we have a power series

If we treat the parameter as a variable, then we have a power series

$$
1+x+x^{2}+x^{3}+\cdots
$$

or

$$
1-\frac{1}{2}(x-2)+\frac{1}{4}(x-2)^{2}+\frac{1}{8}(x-2)^{3}+\cdots
$$

think of these as "infinite polynomials"

Terminology Power Series

A power series about a is a series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

a is fixed number, called centre of the series.
$\left\{c_{n}\right\}$ are the coefficients of the series.

This is also called a power series in $(\boldsymbol{x}-\boldsymbol{a})$.
Example: $1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}$ power series centered at 0 .

What is the centre of the series $\sum_{n=0}^{\infty} n^{3}(2 x-3)^{n}$?
A) $a=2 / 3$
B) $a=3 / 2$
C) $a=2$
D) $a=3$
E) None of the above

Do power series converge?

Power series can be used to define a function only if the series converges.

For what value(s) of x does a power series converge?
> 3 possible cases: 1) convergence at a point (centre) always
2) convergence over an interval sometimes
3) convergence for all \boldsymbol{x} sometimes-ideal case
E.g. $\sum_{n=0}^{\infty} x^{n}$ converges for $|x|<1$ or $-1<x<1$.

Assumption: When working with power series, we'll consider only x-values for which the series converges. We are not concerned with identifying the interval of convergence.

What do power series converge to?

(one of) the most important series

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x} \text { for }|x|<1
$$

If we treat the ratio x as a variable, the sum of this series is a function of x.

Can we build other functions from power series?

The function $\frac{1}{1-x}$ can be represented by $\sum_{n=0}^{\infty} x^{n}$ for $-1<x<1$.

Can we build other functions from power series?

YES! $>$ by manipulating the series $\sum_{n=0}^{\infty} x^{n}$
$>$ by using $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ identifying a general pattern for c_{n} (next week)

Manipulating power series

- Making a change of variable
E.g. We can express $\frac{1}{1+x}$ as a power series by making an appropriate substitution into $\sum_{n=0}^{\infty} x^{n}$.

Manipulating power series

- Multiplying by a factor
E.g.

Express $\frac{3 x}{2-x}$ as a power series.
Strategy: Multiplying a suitable geometric series by a factor containing $3 x$

Which one of the following series can be used to represent $f(x)=\frac{4 x^{12}}{1+3 x}$?
A. $\sum_{n=0}^{\infty}(-1)^{n} 3^{n} x^{n}$
B. $\sum_{n=0}^{\infty} 4 \cdot 3^{n} x^{n}$
C. $\sum_{n=0}^{\infty} 4 \cdot 3^{n} x^{12+n}$
D. $\sum_{n=0}^{\infty}(-1)^{n} 4 \cdot 3^{n} x^{12+n}$
E. $\sum_{n=0}^{\infty}(-1)^{n} 4 \cdot 3 x^{12+n}$

What is the sum of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{9^{n+1}}$?
A) $\frac{x}{9+x^{2}}$
B) $\frac{x}{9-x^{2}}$
C) $\frac{x}{9+x}$
D) $\frac{x}{9-x}$
E) none of the above

Extra question: Express $\frac{1}{x}$ as a power series centred at 1 .

Which of the following series converges to $\frac{1}{x}$?
A) $\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}$
B) $\sum_{n=0}^{\infty}(x-1)^{n}$
C) $\sum_{n=0}^{\infty}(-1)^{n}(x)^{n}$
D) $-\sum_{n=0}^{\infty}(x-1)^{n}$
E) No idea

Theorem: Suppose $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges on some interval I and let $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, then

- $K f(x)=\sum_{n=0}^{\infty} K c_{n}(x-a)^{n} \quad$ where K is a constant
- $(x-a)^{N} f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n+N} \quad$ for any integer $N \geq 1$
- f is differentiable (hence continuous) on the interval of convergence
- $f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}$
- $\int f(x) d x=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}$
(see Theorems 3.5.13 and 3.5.18 for list of operations on Power Series)

Differentiating term by term

Express $\frac{1}{(1-x)^{2}}$ as a power series centred at 0 by differentiating $\sum_{n=0}^{\infty} x^{n}$ (for $|x|<1$)

$$
\begin{gathered}
\frac{1}{(1-x)^{2}}=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{d}{d x}\left(1+x+x^{2}+x^{3}+\cdots\right)= \\
=0+1+2 x+3 x^{2}+\cdots=\sum_{n=1}^{\infty} n x^{n-1}
\end{gathered}
$$

Note: summation of new series starts at $n=1$.

Integrating term by term

Problem: Express $\ln (1+x)$ as a power series centred at 0 .

Find the series representation of $\arctan (x)$.

Most functions can be produced by manipulating $\sum x^{n}$...except...

... except important functions like $e^{x}, \sin (x), \cos (x)$.
\Rightarrow need to find a strategy to build appropriate c_{n}.

More generally,

- What is the power series representation of a function?
- Which functions have power series representations?

Observation: the coefficients of a power series follow a pattern!

$$
\begin{aligned}
& f(x)=\frac{1}{1-x} \\
& f^{\prime}(x)=(1-x)^{-2} \quad f^{\prime \prime}(x)=2(1-x)^{-3} \quad f^{\prime \prime \prime}(x)=6(1-x)^{-4} \\
& f(0)=1, \quad f^{\prime}(0)=1, \quad f^{\prime \prime}(0)=2, \quad f^{\prime \prime \prime}(0)=6 \\
& 1+x+x^{2}+x^{3}+\cdots=f(0)+f^{\prime}(0) \cdot x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{6} x^{3}+\cdots
\end{aligned}
$$

(from Nov 7-8 slides) Taylor Polynomials

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Note $T_{n}(x)$ is partial sum of $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$.
Recall: A series converges to S if $\lim _{n \rightarrow \infty} S_{n}=S$, where S_{n} are the partial sums.
We want $\lim _{n \rightarrow \infty} T_{n}(x)=f(x)$.
Recall error in approximating $f(x)$ with $T_{n}(x)$ is

$$
f(x)-T_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \quad \text { for some } c \text { between } a \text { and } x
$$

If we let the degree \boldsymbol{n} to go to infinity, does the error go to zero? Yes, depends on f and x

Taylor series: a power series representation of a function

Thrm: If f has a power series representation at a, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

then the sequence generating the coefficients of the series is

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

The series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ is called the Taylor series of f at a.

Taylor series for $e^{x}, \sin (x), \cos (x)$
 $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$

$\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} x^{2 n+1}$
$\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!} x^{2 n}$

Question: Prove that $\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ converges to e^{x} for all x.

