Science One Math

March 25, 2019

Series with negative terms

$1-\frac{1}{2}-\frac{1}{4}+\frac{1}{8}+\frac{1}{16}-\frac{1}{32}-\frac{1}{64} \ldots$ does it converge?

Series with negative terms

$1-\frac{1}{2}-\frac{1}{4}+\frac{1}{8}+\frac{1}{16}-\frac{1}{32}-\frac{1}{64} \ldots$ does it converge?

If we replace all negative signs with + , we have a convergent geometric series.

Changing from a_{n} to $\left|a_{n}\right|$ increases the sum (replace negative numbers with positive numbers). The smaller series $\sum a_{n}$ will converge if the larger series $\sum\left|a_{n}\right|$ converges.

Series with negative terms

$1-\frac{1}{2}-\frac{1}{4}+\frac{1}{8}+\frac{1}{16}-\frac{1}{32}-\frac{1}{64} \ldots$ does it converge?

If we replace all negative signs with + , we have a convergent geometric series.

Changing from a_{n} to $\left|a_{n}\right|$ increases the sum (replace negative numbers with positive numbers). The smaller series $\sum a_{n}$ will converge if the larger series $\sum\left|a_{n}\right|$ converges \Rightarrow another test for convergence of $\sum a_{n} \ldots$

Test for Absolute Convergence:

If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ converges (absolutely).

Terminology: Absolute and Conditional Convergence

Definition of Absolute Convergence

- $\sum a_{n}$ is said to converge absolutely if the series $\sum\left|a_{n}\right|$ converges.

Terminology: Absolute and Conditional Convergence

Definition of Absolute Convergence

- $\sum a_{n}$ is said to converge absolutely if the series $\sum\left|a_{n}\right|$ converges.

Definition of Conditional Convergence

- $\sum a_{n}$ is said to converge conditionally if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges.

Terminology: Absolute and Conditional Convergence

Definition of Absolute Convergence

- $\sum a_{n}$ is said to converge absolutely if the series $\sum\left|a_{n}\right|$ converges.

Definition of Conditional Convergence

- $\sum a_{n}$ is said to converge conditionally if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges.

Test for Absolute Convergence:

- If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ converges (absolutely).

Absolute and Conditional Convergence

Definition of Absolute Convergence

- $\sum a_{n}$ is said to converge absolutely if the series $\sum\left|a_{n}\right|$ converges.

Definition of Conditional Convergence

- $\sum a_{n}$ is said to converge conditionally if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges

Test for Absolute Convergence:

- If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ converges (absolutely).

Note: if $\sum\left|a_{n}\right|$ diverges, $\sum a_{n}$ may or may not converge.

Examples

Determine whether the following series converge absolutely

- $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{\sqrt{k^{3}}}$
- $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$
- $\sum_{p=1}^{\infty} \frac{(-1)^{p-1}}{2 p-1}$

Examples

Determine whether the following series converge absolutely

- $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{\sqrt{k^{3}}} \quad \sum_{k=1}^{\infty}\left|a_{k}\right|=\sum_{k=1}^{\infty} \frac{1}{k^{3 / 2}} \mathrm{p}$-series with $\mathrm{p}>1$, converges
- $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$ (series with both positive and negative terms)

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left|\frac{\sin (n)}{n^{2}}\right| \text { converges by comparison with } \sum \frac{1}{n^{2}} \\
\frac{|\sin (n)|}{n^{2}} \leq \frac{1}{n^{2}}
\end{gathered}
$$

- $\sum_{p=1}^{\infty} \frac{(-1)^{p-1}}{2 p-1} \quad \sum_{p=1}^{\infty}\left|a_{p}\right|=\sum_{p=1}^{\infty}\left|\frac{1}{2 p-1}\right|$ diverges by comparison with $\sum \frac{1}{2 p}$

Special case: Alternating series

Signs strictly alternate

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} \cdots
$$

This is an alternating harmonic series. We know it doesn't converge absolutely. Does it converge conditionally?

Special case: Alternating series

Signs strictly alternate

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} \cdots
$$

This is an alternating harmonic series. We know it doesn't converge absolutely. Does it converge conditionally? Look at the behaviour of the partial sums!

Consider

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4} \ldots
$$

where $a_{n+1} \leq a_{n}$ (decreasing sequence)
Intuitively: if the terms are alternating, decreasing, and go to zero, then the partial sums approaches a finite number
\Rightarrow series converges

Alternating Series Test

If $\quad \sum(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots \quad\left(\right.$ with $\left.a_{n}>0\right)$ is such that

- $a_{n+1} \leq a_{n}$ (decreasing sequence)
- $\lim _{n \rightarrow \infty} a_{n}=0$
then the series $\sum(-1)^{n+1} a_{n}$ converges.

Examples

Determine if the following series converge

- $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$
- $\sum_{n=1}^{\infty} \cos (n \pi) \frac{1}{2^{n}}$
- $\sum_{n=2}^{\infty}(-1)^{n} \frac{e^{n}}{n^{5}}$
- $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{n^{n}}$

Examples

- $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$

alternating harmonic series, converges

- $\sum_{n=1}^{\infty} \cos (n \pi) \frac{1}{2^{n}} \quad$ alternating geometric series, converges
- $\sum_{n=2}^{\infty}(-1)^{n} \frac{e^{n}}{n^{5}} \quad$ diverges because $\lim _{n \rightarrow \infty} \frac{e^{n}}{n^{5}}=\infty$
- $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{n^{n}}$

$$
\text { converges because } \lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0 \text { and }
$$

$$
\frac{(n+1)!}{(n+1)^{n+1}}=\frac{n!}{(n+1)^{n}} \leq \frac{n!}{n^{n}}
$$

The algebra of convergent series

Can a convergent series be manipulated as a finite sum? Yes, if it converges absolutely, otherwise no!

The algebra of convergent series

Can a convergent series be manipulated as a finite sum?
Yes, if it converges absolutely, otherwise no!

The delicacy of conditionally convergent series

If a series converges only conditionally, the order of the terms is important.

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9} \cdots=\ln 2 \quad \text { (see next week) }
$$

Rearrange

$$
\begin{aligned}
& \left(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8} \cdots\right)+\left(\frac{1}{3}-\frac{1}{6}-\frac{1}{12} \cdots\right)+\left(\frac{1}{5}-\frac{1}{10}-\frac{1}{20} \cdots\right) \\
& \left(1-\sum\left(\frac{1}{2}\right)^{n}\right)+\frac{1}{3}\left(1-\sum\left(\frac{1}{2}\right)^{n}\right)+\frac{1}{5}\left(1-\sum\left(\frac{1}{2}\right)^{n}\right)+\cdots \text { we get } 0=\ln 2(!) \\
& \rightarrow 0
\end{aligned}
$$

What have infinite series to do with calculus?

Convergent infinite series can be used to define functions!

Recall definition of a function: a function is a "rule" for assigning to each input value (x-value) a single output value (y-value).

A convergent series converges to its sum. If we changed the numbers in the series, the sum of the series is likely to change.

Numbers in series as "input" \rightarrow sum of series as "output"

Our goal: go back from numbers to functions!

Which convergent series has a well-known sum? $\quad \Rightarrow$ Geometric series

Which of these are geometric series?
i) $3+3 \cdot \frac{2}{3}+3 \cdot \frac{4}{9}+3 \cdot \frac{8}{27}+\cdots$
ii) $2+\frac{4}{3}+\frac{8}{9}+\frac{16}{27}+\cdots$
iii) $1+a+a^{2}+a^{3}+\cdots$ where a is a constant
iv) $1-\frac{1}{2}(b-2)+\frac{1}{4}(b-2)^{2}-\frac{1}{8}(b-2)^{3} \ldots$ where b is a constant
A) $i)$
B) i) and ii)
C) All of them
D) None of them

Which of these are geometric series?
i) $3+3 \cdot \frac{2}{3}+3 \cdot \frac{4}{9}+3 \cdot \frac{8}{27}+\cdots$
ii) $2+\frac{4}{3}+\frac{8}{9}+\frac{16}{27}+\cdots$
iii) $1+a+a^{2}+a^{3}+\cdots$ where a is a constant
iv) $1-\frac{1}{2}(b-2)+\frac{1}{4}(b-2)^{2}-\frac{1}{8}(b-2)^{3} \ldots$ where b is a constant
A) i)
B) i) and ii)
C) All of them
\boldsymbol{a} and \boldsymbol{b} are PARAMETERS
D) None of them

Power Series

If we treat the parameter as a variable x, we have a power series e.g,

$$
1+x+x^{2}+x^{3}+\cdots
$$

or

$$
1-\frac{1}{2}(x-2)+\frac{1}{4}(x-2)^{2}+\frac{1}{8}(x-2)^{3}+\cdots
$$

Think of these as "infinite polynomials".

Power Series

A power series about a is a series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

where a is fixed number, called centre of the series.
This is also called a power series in $(x-a)$.

Example: $1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}$ is centred at 0.

What is the centre of the series $\sum_{n=0}^{\infty} n^{3}(2 x-3)^{n}$?
A) $a=2 / 3$
B) $a=3 / 2$
C) $a=2$
D) $a=3$
E) None of the above

What is the centre of the series $\sum_{n=0}^{\infty} n^{3}(2 x-3)^{n}$?

$$
\begin{aligned}
& \text { A) } a=2 / 3 \\
& \text { B) } \boldsymbol{a}=\mathbf{3} / \mathbf{2} \\
& \text { C) } a=2 \\
& \text { D) } a=3 \\
& \text { E) None of the above }
\end{aligned}
$$

To find the centre a of a power series, we want series in the form $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$

Do power series converge?

Power series can be used to define a function only if the series converges.

For what value(s) of x does a power series converge?
> 3 possible cases: 1) convergence at a point (centre) always
2) convergence over an interval sometimes
(interval of convergence)
3) convergence for all \boldsymbol{x} sometimes
E.g. $\sum_{n=0}^{\infty} x^{n}$ converges for $|x|<1$ or $-1<x<1$.

Assumption: When working with power series, we'll consider only x-values for which the series converges.

