Science One Math

March 11, 2019

Applications of Integration

- Computing areas
- Computing changes
- Computing volumes
- Computing probabilities
- Locating centre of mass of a lamina

Key ideas 🖛 "slicing, approximating, adding infinite contributions"

Today: Using integration to compute work done by a non constant force

From your Physics class (last Wednesday)

 $\Delta U = -\int_{i}^{f} \vec{F} \cdot \vec{ds} \quad \text{change in potential energy (work done by } \vec{F}\text{)}$

For a conservative force (when work is independent of path), we can define a potential U such that

$$F_s = -\frac{dU}{ds}$$

This is the **fundamental theorem of calculus!**

Fundamental Theorem of Calculus is fundamental in Physics too!

FTC tells us
$$\int_{a}^{b} F(x)dx = U(b) - U(a)$$
 where $U(x) = \int F(x)dx + C$.
FTC also tells us $F(x) = \frac{dU}{dx}$ where $U(x) = \int_{a}^{x} F(t)dt$.
We call $U(x)$ the **potential energy**, then $\int_{a}^{b} F(x)dx$ is **Work**

Convention:

$$F(x) = \frac{dU}{dx}$$
 for an *external* force (exerted *on* object

$$F(x) = -\frac{dU}{dx}$$
 for a force exerted by the potential energy

How to derive $\int_{i}^{f} \vec{F} \cdot \vec{ds}$ mathematically (for straight paths)

If \vec{F} is constant along the path \Rightarrow **basic definition of work**

$$W = \vec{F} \cdot \vec{s} = F_s \Delta s$$

(work done by a **constant force** \vec{F} acting on a particle that moves along displacement \vec{s})

How to derive $\int_{i}^{f} \vec{F} \cdot \vec{ds}$ mathematically (for straight paths)

If \vec{F} is constant along the path \Rightarrow **basic definition of work**

 $W = \vec{F} \cdot \vec{s} = F_s \Delta s$

(work done by a **constant force** \vec{F} acting on a particle that moves along displacement \vec{s})

If \vec{F} changes along the path \Rightarrow use Calculus!

- slice path into segments
- assume force is constant along each segment \Rightarrow compute work done by constant force to move particle over the segment $\Delta W = \vec{F} \cdot \vec{\Delta s} = F_s \Delta s$
- add up all contributions to work
- take the limit for an infinite number of segments \Rightarrow definite integral $\int_{i}^{f} \vec{F} \cdot \vec{ds}$

Computing work done by a non constant force

- "slice" path into *n* segments of length Δx *k*-th segment is $[x_k, x_{k+1}]$
- approximate force by a constant on each segment (possibly different for each segment) let $F(x_k^*)$ be force component along k-th segment, for $x_k \le x_k^* \le x_{k+1}$
- compute work done by (constant) force on each segment of path $\Delta W = F(x_k^*)\Delta x$
- add up small amounts of work \Rightarrow Riemann Sum $\sum_{k=1}^{n} F(x_k^*) \Delta x$
- take the **limit for** $n \to \infty \Rightarrow$ a definite integral

$$W = \lim_{n \to \infty} \sum_{k=1}^{n} F(x_k^*) \Delta x = \int_a^b F(x) dx$$

A few examples of non constant forces:

- elastic force
- electric force
- gravity on a point-like object of varying mass
- gravity on a distributed mass
- force exerted by (on) a gas during gas expansion

Work done on a spring

Hooke's law : force required to keep a spring compressed or stretched a distance x is *proportional* to x. Note: x is measured from the natural length of spring.

Work done on a spring

Problem: Compute the work done **on the spring** to compress it by *X*.

- "slice path", each segment is Δx long
- approximate force as a constant on each segment, on *i*-th segment, consider force of magnitude $F_i = kx_i$
 - compute work to compress by Δx , Recall: Force exerted **on spring** is in the same direction as displacement, $\overrightarrow{F_i} \cdot \overrightarrow{\Delta x} = F_i \Delta x \cos(0) = F_i \Delta x$ $\Rightarrow \Delta W_i = k x_i \Delta x$
- add up all contributions and take a limit \Rightarrow definite integral

$$W = \int_0^{-X} kx \, dx = \frac{1}{2} \, k \, X^2$$

Work done by a spring

Problem: Compute work done **by the spring** when compressed by *X*.

- approximate force as a constant on each segment, on *i*-th segment, consider force of magnitude $F_i = kx_i$
- compute work when compressed by Δx , Recall: Force exerted **by spring** is *opposite* to displacement, $\overrightarrow{F_i} \cdot \overrightarrow{\Delta x} = F_i \Delta x \cos(\pi) = -F_i \Delta x$ $\Rightarrow \Delta W_i = -kx_i \Delta x$
- add up all contributions and take a limit \Rightarrow definite integral

$$W = -\int_0^{-X} kx \, dx = -\frac{1}{2} \, k \, X^2$$

Work done on a point charge

Problem: Find the electric potential energy between two charges a distance *r* apart.

Recall: When a conservative force acts on a particle that moves from a to b, the change in potential energy is the negative work done by conservative force, $U_b - U_a = -W$.

Strategy: Compute work done on q_1 by the electric force exerted by a second (stationary) charge q_2 when q_1 moves from very far (∞) to r.

Work done on a point charge

Problem: Find the electric potential energy between two charges a distance *r* apart.

- "slice" path, each segment is $\Delta r \log$
- approximate force, on the *i*-th segment consider $F_i = \frac{kq_1q_2}{(r_i)^2}$
- compute work done to move $q_1\,$ by Δr

Recall: Electric force is in the same direction as the displacement

$$\Rightarrow \Delta W_i = \overrightarrow{F_i} \cdot \overrightarrow{\Delta r} = F_i \Delta r_i = \frac{kq_1q_2}{(r_i)^2} \Delta r_i$$

Add up all contributions and take a limit $\Rightarrow W = \int_{\infty}^{r} \frac{kq_1q_2}{z^2} dz$ improper integral

$$\Delta U = -\int_{\infty}^{r} \frac{kq_1q_2}{z^2} dz = -\lim_{R \to \infty} -\frac{kq_1q_2}{z} \Big|_{R}^{r} = \frac{kq_1q_2}{r} - \lim_{R \to \infty} \frac{kq_1q_2}{R} = \frac{kq_1q_2}{r}$$

A leaky bucket...

A 2 kg bucket and a light rope are used to draw water from a well that is 40 m deep. The bucket is filled with 20 kg of water and is pulled up at 0.5 m/s, but water leaks out of a hole in the bucket at 0.1 kg/s. Find the work done in pulling the bucket to the top of the well.

A leaky bucket...

A 2 kg bucket and a light rope are used to draw water from a well that is 40 m deep. The bucket is filled with 20 kg of water and is pulled up at 0.5 m/s, but water leaks out of a hole in the bucket at 0.1 kg/s. Find the work done in pulling the bucket to the top of the well.

Force acting on bucket changes as water leaks out \Rightarrow need to integrate! Solution

- slice up path into segments $\Delta y \log y$
- on the *i*-th segment consider $F_i = m_i g$
- work to lift water by Δy is $\Delta W = m_i g \Delta y \Rightarrow m_i = m(y_i)$, *m* is a function of *y*

$$\frac{dm}{dy} = -\frac{0.1}{0.5}, \ m(0) = 20 \ \Rightarrow \ m(y) = -0.2y + 20$$

 $W_{water} = \int_0^{40} (-0.2y + 20)g \, dy$ $W_{bucket} = mg \cdot 40 = 80g$ (constant m)

 $W_{total} = W_{water} + W_{bucket}$

A 10-m long rope of density 2 kg/m is hanging from a wall which is 5 m high (so 5 m of rope runs down the length of the wall and the remaining 5 m is coiled at the bottom of the wall).

How much work (in J) is required to pull the rope to the top of the wall? Let g be the acceleration due to gravity.

A 10-m long rope of density 2 kg/m is hanging from a wall which is 5 m high (so 5 m of rope runs down the length of the wall and the remaining 5 m is coiled at the bottom of the wall).

How much work (in J) is required to pull the rope to the top of the wall? Let *g* be the acceleration due to gravity.

Rope has distributed mass, NOT point-like object

portion of rope near the top undergoes small displacement,

portion of rope near the ground undergoes bigger displacement

Mass is distributed uniformly along rope \Rightarrow force is constant

Displacement changes \Rightarrow need to integrate!

Strategy:

- "slice" rope into small segments of mass Δm .
- Compute work to lift each segment to the top of wall

A 10-m long rope of density 2 kg/m is hanging from a wall which is 5 m high (so 5 m of rope runs down the length of the wall and the remaining 5 m is coiled at the bottom of the wall).

How much work (in J) is required to pull the rope to the top of the wall? Let *g* be the acceleration due to gravity.

What's the work ΔW to lift a segment of rope Δy long from a height y to the top of the wall?

A.
$$\Delta W = (2\Delta y)g y$$

B.
$$\Delta W = (2\Delta y)g(5 - y)$$

C.
$$\Delta W = (2\Delta y)g(10 - y)$$

D.
$$\Delta W = (2\Delta y)g(5 + y)$$

E.
$$\Delta W = (2\Delta y)g(10 + y)$$

A 10-m long rope of density 2 kg/m is hanging from a wall which is 5 m high (so 5 m of rope runs down the length of the wall and the remaining 5 m is coiled at the bottom of the wall).

How much work (in J) is required to pull the rope to the top of the wall? Let *g* be the acceleration due to gravity.

What's the work ΔW to lift a segment of rope Δy long from a height y to the top of the wall?

A. $\Delta W = (2\Delta y)gy$ B. $\Delta W = (2\Delta y)g(5 - y)$ C. $\Delta W = (2\Delta y)g(10 - y)$ D. $\Delta W = (2\Delta y)g(5 + y)$ E. $\Delta W = (2\Delta y)g(10 + y)$

A 10-m long rope of density 2 kg/m is hanging from a wall which is 5 m high (so 5 m of rope runs down the length of the wall and the remaining 5 m is coiled at the bottom of the wall).

How much work (in J) is required to pull the rope to the top of the wall? Let *g* be the acceleration due to gravity.

A.
$$W = \int_0^5 2g(5-y)dy$$

B.
$$W = \int_0^{10} 2g(5-y)dy$$

C.
$$W = \int_0^5 2g(5-y)dy + 50g$$

A 10-m long rope of density 2 kg/m is hanging from a wall which is 5 m high. How much work (in J) is required to pull the rope to the top of the wall? Let g be the acceleration due to gravity.

A segment (of hanging rope) at height y moves a distance (5 - y)

A segment (of coiled rope) moves a distance of 5 m (constant displacement, no need to integrate)

total work
$$W = \int_0^5 2g(5-y)dy + 2 \cdot 5 \cdot g \cdot 5$$

force displacement

Building a pile of sand...

How much work must be done in producing a conical heap of sand of base radius R and height H? Let ρ be the density of mass (kg/m³). You may assume that all the sand is taken from the surface of the earth (that is, from height 0).

Building a pile of sand...

How much work must be done in producing a conical heap of sand of base radius R and height H? Let ρ be the density of mass (kg/m³). You may assume that all the sand is taken from the surface of the earth (that is, from height 0).

No work is done when moving sand horizontally. I less mass at the top of pile compared to the bottom sand at the top travels higher than sand at the bottom

Both mass (force) and displacement change \Rightarrow Integrate!

Strategy:

- "slice" pile into horizontal layers of mass Δm
- compute work done to lift each layer to its current height

Building a pile of sand

How much work must be done in producing a conical heap of sand of base radius R and height H? Let ρ be the density of mass (kg/m³). You may assume that all the sand is taken from the surface of the earth (that is, from height 0).

Work to lift a layer of mass Δm up a height y from the ground

force displacement $\Delta W = (\Delta m_{layer} \cdot g) \cdot y$

$$\Delta m_{layer} = \rho \cdot \Delta V_{layer}$$
$$\Delta V_{layer} = \pi r^2 \Delta y = \pi \left(R - \frac{R}{H} y \right)^2 \Delta y$$

$$W = \int_0^H \rho \ g \pi \left(R - \frac{R}{H} y \right)^2 \ y \ dy$$

Digging a well

Consider two workers digging a well. How deep should the first worker dig so that each does the **same amount of work**?

Assume the well does not get any wider or narrower as the workers dig.

- A. The first worker should dig to a depth D/2
- B. The first worker should dig to a depth D/3
- C. The first worker should dig to a depth 2D/3
- D. The first worker should dig to a depth 3D/4
- E. The first worker should dig to a depth $D/\sqrt{2}$

Digging a hole

Consider two workers digging a hole. How deep should the first worker dig so that each does the same amount of work?

- $\rho = \text{density of the dirt (constant)}$
- D = depth of the well (fixed)
- A = cross-sectional area of the well (constant)

$$W_{tot} = \int_{0}^{D} \rho A g y dy = \rho A g \frac{D^2}{2}$$

Let z be the depth of the hole the first worker, must solve

$$\int_0^z \rho A g y dy = \frac{1}{2} \rho A g \frac{D^2}{2} \quad \Rightarrow z = \frac{D}{\sqrt{2}}.$$

Pumping out fluid from a tank

A cylindrical tank with a length of L m and a radius of R m is on its side and half-full of gasoline. How much work is done to empty the tank through an outlet pipe at the top of the tank?

Let ρ be density of gasoline, and A be the cross-sectional area of a layer at height y,

A.
$$\int_{0}^{2R} \rho g A (2R - y) dy$$

B.
$$\int_{0}^{2R} \rho g A (R - y) dy$$

C.
$$\int_{0}^{R} \rho g A (2R - y) dy$$

D.
$$\int_{0}^{R} \rho g A y dy$$

E.
$$\int_{0}^{R} \rho g A dy$$

Pumping out fluid from a tank

A cylindrical tank with a length of L m and a radius of R m is on its side and half-full of gasoline. How much work is done to empty the tank through an outlet pipe at the top of the tank?

Let ρ be density of gasoline, and A be the cross-sectional area of a layer at height y,

A.
$$\int_{0}^{2R} \rho g A (2R - y) dy$$

B.
$$\int_{0}^{2R} \rho g A (R - y) dy$$

C.
$$\int_{0}^{R} \rho g A (2R - y) dy$$

D.
$$\int_{0}^{R} \rho g A y dy$$

E.
$$\int_{0}^{R} \rho g A dy$$