Application of Integration: Centre of Mass

Goal: compute the centre of mass of a lamina (thin, flat plate)

i.e. the point on which it balances horizontally.

For example:

Centre of mass of 1D objects

First: what is the centre of mass of several point masses on a line? If mass m_{k} sits at position x_{k} :

$$
\bar{x}=\frac{\sum_{k=1}^{n} m_{k} x_{k}}{\sum_{k=1}^{n} m_{k}}=\frac{M}{m}=\frac{\text { moment }(\text { about } x=0)}{\text { total mass }}
$$

Next: what is the centre of mass of a continuous 1D object (wire, rod) $a \leq x \leq b$ with given linear density (mass/unit length) $\rho(x)$?

$$
\bar{x}=\frac{\int_{a}^{b} x \rho(x) d x}{\int_{a}^{b} \rho(x) d x}=\frac{M}{m}=\frac{\text { moment (about } x=0)}{\text { total mass }}
$$

Example: Find the centre of mass of a wire $0 \leq x \leq L$ with (linear) density $\rho(x)=k x \quad$:

$$
\begin{aligned}
& m=\int_{0}^{L} \rho(x) d x=k \int_{0}^{L} x d x=\left.k \frac{x^{2}}{2}\right|_{0} ^{L}=\frac{k}{2} L^{2} \\
& M=\int_{0}^{L} x \rho(x) d x=k \int_{0}^{L} x^{2} d x=\left.k \frac{x^{3}}{3}\right|_{0} ^{L}=\frac{k}{3} L^{3} \\
& \bar{x}=\frac{M}{m}=\frac{\frac{k}{3} L^{3}}{\frac{k}{2} L^{2}}=\frac{2}{3} L
\end{aligned}
$$

Centre of mass of 2D lamina

First: what is the centre of mass of several point masses in a plane? If mass m_{k} sits at position $\left(x_{k}, y_{k}\right):(\bar{x}, \bar{y})$, where

$$
\bar{x}=\frac{\sum_{k=1}^{n} m_{k} x_{k}}{\sum_{k=1}^{n} m_{k}}=\frac{M_{y}}{m}, \quad \bar{y}=\frac{\sum_{k=1}^{n} m_{k} y_{k}}{\sum_{k=1}^{n} m_{k}}=\frac{M_{x}}{m}
$$

Next: what is the centre of mass (\bar{x}, \bar{y}) of a 2D lamina of constant density whose shape is the region below $y=f(x), a \leq x \leq b$?

$$
\bar{x}=\frac{M_{y}}{m}=\frac{\rho \int_{a}^{b} x f(x) d x}{\rho \int_{a}^{b} f(x) d x}=\frac{\int_{a}^{b} x f(x) d x}{\int_{a}^{b} f(x) d x}=\frac{1}{A} \int_{a}^{b} x f(x) d x
$$

$$
\bar{y}=\frac{M_{x}}{m}=\frac{\rho \int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x}{\rho \int_{a}^{b} f(x) d x}=\frac{\int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x}{\int_{a}^{b} f(x) d x}=\frac{1}{A} \int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x
$$

The constant density cancels. We also call (\bar{x}, \bar{y}) the centroid.
Example: Find the centroid of $\left\{0 \leq y \leq 1-x^{2}, 0 \leq x \leq 1\right\}$:
$M=A=\int_{0}^{1}\left(1-x^{2}\right) d x=\left.\left(x-\frac{1}{3} x^{3}\right)\right|_{0} ^{1}=1-\frac{1}{3}=\frac{2}{3}$
$M_{y}=\int_{0}^{1} x\left(1-x^{2}\right) d x=\left.\left(\frac{1}{2} x^{2}-\frac{1}{4} x^{4}\right)\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}, \quad \bar{x}=\frac{1}{4} / \frac{2}{3}=\frac{3}{8}$
$M_{x}=\int_{0}^{1} \frac{1}{2}\left(1-x^{2}\right)^{2} d x=\frac{1}{2} \int_{0}^{1}\left(1-2 x^{2}+x^{4}\right) d x=\frac{4}{15}, \quad \bar{y}=\frac{4 / 15}{2 / 3}=\frac{2}{5}$

Find the centroid of a $\frac{1}{4}$-disk.

- put it in the first quadrant: $0 \leq x \leq R, 0 \leq y \leq \sqrt{R^{2}-x^{2}}$
- by symmetry, $\bar{x}=\bar{y}$
- $A=\frac{1}{4} \pi R^{2}$
- $\bar{x}=\frac{1}{A} \int_{0}^{R} x \sqrt{R^{2}-x^{2}} d x=\left.\frac{4}{\pi R^{2}}\left(-\frac{1}{3}\left(R^{2}-x^{2}\right)^{\frac{3}{2}}\right)\right|_{0} ^{R}=\frac{4 R}{3 \pi}$
- double-check: $\bar{y}=\frac{1}{A} \int_{0}^{R} \frac{1}{2}\left(\sqrt{R^{2}-x^{2}}\right)^{2} d x$

$$
=\frac{2}{\pi R^{2}} \int_{0}^{R}\left(R^{2}-x^{2}\right) d x=\frac{2}{\pi R^{2}}\left(R^{3}-\frac{R^{3}}{3}\right)=\frac{4 R}{3 \pi}
$$

A little more on centroids

- for a region between two graphs $\{g(x) \leq y \leq f(x), a \leq x \leq b\}$

$$
\bar{x}=\frac{1}{A} \int_{a}^{b} x(f(x)-g(x)) d x, \quad \bar{y}=\frac{1}{A} \int_{a}^{b} \frac{1}{2}\left([f(x)]^{2}-[g(x)]^{2}\right) d x
$$

- solids of revolution revisited ...

Pappus's Theorem: if a region of area A in the plane is rotated about a line L not intersecting it, the resulting volume is

$$
V=2 \pi \bar{r} A, \quad \bar{r}=\text { distance from centroid to } L
$$

Example: Use Pappus to find the volume of a doughnut (torus). A doughnut is obtained by rotating a disk of radius r about a line a distance $R>r$ away from its centre. Pappus says:
$V=2 \pi R\left(\pi r^{2}\right)=2 \pi^{2} R r^{2}$. (Fun: do this using "shells".)

