Last topic: sequences, series, power series, Taylor series...

- sequences: $1,1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots \quad\left(\frac{1}{n!}, n=0,1,2,3, \ldots\right)$
- how does the n-th term of a sequence behave as $n \rightarrow \infty$?
- series (infinite sums): $1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\cdots \quad(=e)$
- its "partial sums" form a sequence:

$$
1,1+1=2,1+1+\frac{1}{2}=\frac{5}{2}, 1+1+\frac{1}{2}+\frac{1}{6}=\frac{8}{3}, \ldots
$$

- what does it mean to add together infinitely many numbers?
- power/Taylor series: $1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\cdots$

$$
\left(=e^{x}\right)
$$

- such a series gives a function of x (or does it?)
- which functions can be represented as series?
- connect back to calculus: differentiate, integrate...

Sequences

A sequence (or infinite sequence) is an ordered list of numbers with a first element, but no last element:

$$
a_{1}, a_{2}, a_{3}, a_{4}, \cdots=\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{a_{n}\right\}
$$

(that is, a function whose domain is the set of positive integers).

- $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}: 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$
- $1,-\frac{1}{3}, \frac{1}{9},-\frac{1}{27}, \frac{1}{81},-\frac{1}{243}, \ldots: a_{n}=\left(-\frac{1}{3}\right)^{n}, n=0,1,2, \ldots$
- $-E_{0},-\frac{E_{0}}{4},-\frac{E_{0}}{9},-\frac{E_{0}}{16}, \ldots:\left\{-\frac{E_{0}}{n^{2}}\right\}_{n=1}^{\infty}$, hydrogen energy levels
- $2,3,5,7,11,13,17, \ldots: a_{n}=n$-th prime number
- 1, 1, 2, 3, 5, 8, 13, ... (Fibonacci)

55	34
	3 21 13 21

- $a_{1}=1, a_{2}=1$, and $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$
- in fact: $a_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}$
- $2,7,1,8,2,8,1,8, \ldots$ digits of $e=2.7182818284 \ldots$
- $1,3,6,10,15,21, \ldots$ (triangular numbers)

$$
-T_{n}=\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)
$$

- $1,11,21,1211,111221,312211,13112221, \ldots$
- hint: say it out loud

Convergence of sequences

Example: how does the n-th term of the sequence
$\frac{2}{2}, \frac{3}{4}, \frac{4}{6}, \frac{5}{8}, \frac{6}{10}, \frac{7}{12}, \frac{8}{14}, \frac{9}{16}, \frac{10}{18}, \ldots$ behave as $n \rightarrow \infty$?
$a_{n}=\frac{n+1}{2 n}=\frac{1}{2}+\frac{1}{2 n}$ tends toward $\frac{1}{2}$ as $n \rightarrow \infty$.
We say a sequence $\left\{a_{n}\right\}$ converges to the limit L, and write

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { if: }
$$

- "we can make a_{n} as close as we like to L by taking n large enough"; that is,
- for every $\epsilon>0$, there is an integer N such that

$$
n>N \Longrightarrow\left|a_{n}-L\right|<\varepsilon
$$

If a sequence does not converge to a limit, we say it diverges. (If $\lim _{n \rightarrow \infty} a_{n}= \pm \infty$ we may say the sequence diverges to $\pm \infty$.)

- limits of sequences obey all the same rules as limits of functions
- if $a_{n}=f(n)$ where $f=f(x)$ is a function on the real line and $\lim _{x \rightarrow \infty} f(x)=L$, then $\lim _{n \rightarrow \infty} a_{n}=L$

Determine if each sequence converges, and if so find its limit:

1. $\left\{\frac{n^{2}}{n^{2}+n+1}\right\}$
2. $a_{n}=\cos \left(\frac{1}{n}\right), \quad a_{n}=\cos (n \pi), \quad a_{n}=\cos (2 n \pi)$
3. $\left\{r^{n}\right\}_{n=1}^{\infty}: r, r^{2}, r^{3}, r^{4}, r^{5}, \ldots$
4. $a_{n}=\ln (n+1)-\ln (n)$
5. $a_{n}=\left(1+\frac{1}{n}\right)^{n}$
6. $\left\{\frac{n!}{n^{n}}\right\}$
7. $\left\{\frac{n^{2}}{n^{2}+n+1}\right\}: \lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+n+1}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}+\frac{1}{n^{2}}}=\frac{1}{1+0+0}=1$
8. $a_{n}=\cos \left(\frac{1}{n}\right), \quad a_{n}=\cos (n \pi), \quad a_{n}=\cos (2 n \pi)$:
$\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n}\right)=\cos (0)=1$,
$\{\cos (n \pi)\}=\{-1,1,-1,1,-1,1, \ldots\}$ diverges
$\{\cos (2 n \pi)\}=\{1,1,1,1,1,1, \ldots\}$ converges to 1
9. $\left\{r^{n}\right\}_{n=1}^{\infty}: r, r^{2}, r^{3}, r^{4}, r^{5}, \ldots$
diverges if $r \leq-1$ or $r>1$, converges to 1 if $r=1$, and if $|r|<1, \lim _{n \rightarrow \infty} r^{n}=0$
10. $a_{n}=\ln (n+1)-\ln (n): a_{n}=\ln \left(\frac{n+1}{n}\right)=\ln \left(1+\frac{1}{n}\right)$ converges to $\ln (1)=0$
11. $a_{n}=\left(1+\frac{1}{n}\right)^{n} \lim _{n \rightarrow \infty} \ln \left(a_{n}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{-\frac{1}{n^{2}}}{\left(1+\frac{1}{n}\right)\left(-\frac{1}{n^{2}}\right)}$
(l'Hôpital) $=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1$, so $\lim _{n \rightarrow \infty} a_{n}=e^{1}=e$
12. $\left\{\frac{n!}{n^{n}}\right\} \quad 0 \leq a_{n}=\left[\frac{n}{n} \frac{n-1}{n} \frac{n-2}{n} \cdots \frac{2}{n}\right] \frac{1}{n} \leq \frac{1}{n}$, so by 'squeeze', $\lim _{n \rightarrow \infty} a_{n}=0$.

Series

Can we add together together infinitely many numbers?
Try
sums: $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\underset{5}{1}+\cdots \quad$?
No! The running sum increases to ∞.
If A is twice as fast as T, the fraction of the initial gap to T that A makes up is:

$$
\begin{array}{ll}
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\cdots \\
\text { sums: } & 0.500 \\
0.750 & 0.875 \\
0.938 & 0.969 \\
0.984 & 0.992 \cdots
\end{array}
$$

The running sum seems to settle down, tending, perhaps, toward 1.

A series (or infinite series) is an expression of the form

$$
\sum_{j=1}^{\infty} a_{j}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+\cdots
$$

We make sense of a series by considering its partial sums:

$$
s_{n}:=\sum_{j=1}^{n} a_{j}=a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}
$$

The partial sums themselves form a sequence of numbers:

$$
s_{1}=a_{1}, \quad s_{2}=a_{1}+a_{2}, \quad s_{3}=a_{1}+a_{2}+a_{3}, \quad s_{4}=\cdots
$$

Let $s_{n}=a_{1}+a_{2}+\ldots+a_{n-1}+a_{n}$ be the n-th partial sum of a series $\sum_{j=1}^{\infty} a_{j}$. We say this series converges to the sum s if

$$
\lim _{n \rightarrow \infty} s_{n}=s . \quad \text { Then we write } \quad \sum_{j=1}^{\infty} a_{j}=s \text {. }
$$

If $\lim _{n \rightarrow \infty} s_{n}$ does not exist, we say the series diverges.

Examples

- $\sum_{k=1}^{\infty} k=1+2+3+4+5+\cdots$ $s_{1}=1, s_{2}=1+2=3, s_{3}=1+2+3=6, \ldots, s_{n}=\frac{1}{2} n(n+1)$ and $\lim _{n \rightarrow \infty} \frac{1}{2} n(n+1)$ does not exist $(=+\infty)$, so $\sum_{k=1}^{\infty} k \quad \underline{\text { diverges }}$
- $\sum_{j=1}^{\infty}(-1)^{j}=-1+1-1+1-1+1-\cdots$
sequence $\left\{s_{n}\right\}$ of partial sums $\{-1,0,-1,0,-1, \ldots\}$ does not converge, so $\sum_{j=1}^{\infty}(-1)^{j}$ diverges

These two series cannot possibly converge for a simple reason: the terms (the amount we add at each step) don't tend to zero!

Theorem: if $\sum_{j=1}^{\infty} a_{j}$ converges, then $\lim _{j \rightarrow \infty} a_{j}=0$.

Proof: $s_{n}=\sum_{j=1}^{n} a_{n}$ (n-th partial sum). Then $s_{n}-s_{n-1}=a_{n}$, so $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}-\lim _{n \rightarrow \infty} s_{n-1}=s-s=0$.

We can rephrase this as a simple "test" for convergence of a series:

$$
\text { If } \lim _{k \rightarrow \infty} a_{k} \neq 0 \text { (or does not exist), then } \sum_{k=1}^{\infty} a_{k} \text { diverges. }
$$

Example: $\sum_{k=1}^{\infty} \frac{k(k+2)}{(k+3)^{2}}: \lim _{k \rightarrow \infty} \frac{k(k+2)}{(k+3)^{2}}=\lim _{k \rightarrow \infty} \frac{k^{2}+2 k}{k^{2}+6 k+9}$

$$
=\lim _{k \rightarrow \infty} \frac{1+\frac{2}{k}}{1+\frac{6}{k}+\frac{9}{k^{2}}}=1 \neq 0 \text {, so this series diverges. }
$$

Warning: this test does not work in the opposite direction! There are series whose terms go to zero, but the series still fails to converge. An example is the "harmonic series"

$$
\sum_{j=1}^{\infty} \frac{1}{j}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \quad \text { (more on this later...) }
$$

Geometric Series

A geometric series (with "common ratio" r) is

$$
a+a r+a r^{2}+a r^{3}+a r^{4}+\cdots=\sum_{j=1}^{\infty} a r^{j-1}=\sum_{j=0}^{\infty} a r^{j}
$$

Examples we've already seen today:

- $r=1, a=1: \quad \sum_{j=0}^{\infty} 1 \cdot(1)^{j}=1+1+1+\cdots$ diverges
- $r=\frac{1}{2}, a=\frac{1}{2}: \quad \sum_{j=1}^{\infty} \frac{1}{2}\left(\frac{1}{2}\right)^{j-1}=\sum_{j=1}^{\infty}\left(\frac{1}{2}\right)^{j}$

$$
=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots
$$

For which values of r does the geometric series
$a+a r+a r^{2}+a r^{3}+a r^{4}+\cdots=a\left(1+r+r^{2}+r^{3}+r^{4}+\cdots\right)=\sum_{j=1}^{\infty} a r^{j-1}$
converge? And to what sum?
First test: is $\lim _{j \rightarrow \infty} a r^{j-1}=0$? Only if $-1<r<1$.
If $-1<r<1$, we compute the partial sums (blackboard):

$$
s_{n}=\sum_{j=1}^{n} a r^{j-1}=a+a r+a r^{2}+\cdots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

and so $\lim _{n \rightarrow \infty} s_{n}=\frac{a}{1-r}$. Summary:
The geometric series $\sum_{j=1}^{\infty} a r^{j-1}=a+a r+a r^{2}+a r^{3}+a r^{4}+\cdots$

- converges, if $|r|<1$, with $\sum_{j=1}^{\infty} a r^{j-1}=\frac{a}{1-r}$
- diverges, if $|r| \geq 1$

