Last topic: sequences, series, power series, Taylor series...

• sequences: 1, 1, $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{24}$, $\frac{1}{120}$,... ($\frac{1}{n!}$, n = 0, 1, 2, 3, ...)

– how does the *n*-th term of a sequence behave as $n \to \infty$?

- series (infinite sums): $1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$ (= e)
 - its "partial sums" form a sequence: 1, 1+1=2, $1+1+\frac{1}{2}=\frac{5}{2}$, $1+1+\frac{1}{2}+\frac{1}{6}=\frac{8}{3},\ldots$

- what does it mean to add together infinitely many numbers?

- power/Taylor series: $1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5 + \cdots$ (= e^x)
 - such a series gives a function of x (or does it?)
 - which functions can be represented as series?
 - connect back to calculus: differentiate, integrate...

Sequences

A **sequence** (or **infinite sequence**) is an ordered list of numbers with a first element, but no last element:

$$a_1, a_2, a_3, a_4, \cdots = \{a_n\}_{n=1}^{\infty} = \{a_n\}$$

(that is, a function whose domain is the set of positive integers).

- $\{\frac{1}{n}\}_{n=1}^{\infty}$: 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$,... • 1, $-\frac{1}{3}$, $\frac{1}{9}$, $-\frac{1}{27}$, $\frac{1}{81}$, $-\frac{1}{243}$,... : $a_n = \left(-\frac{1}{3}\right)^n$, n = 0, 1, 2, ...• $-E_0$, $-\frac{E_0}{4}$, $-\frac{E_0}{9}$, $-\frac{E_0}{16}$,... : $\{-\frac{E_0}{n^2}\}_{n=1}^{\infty}$, hydrogen energy levels
- 2, 3, 5, 7, 11, 13, 17, ... : $a_n = n$ -th prime number

• 1, 1, 2, 3, 5, 8, 13,... (*Fibonacci*)

-
$$a_1 = 1, a_2 = 1$$
, and $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$
- in fact: $a_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$

• 2, 7, 1, 8, 2, 8, 1, 8, ...: digits of $e = 2.7182818284\cdots$

• 1, 3, 6, 10, 15, 21, ... (triangular numbers)

$$- T_n = \sum_{k=1}^n k = \frac{1}{2}n(n+1)$$

- 1, 11, 21, 1211, 111221, 312211, 13112221,...
 - hint: say it out loud

Convergence of sequences

Example: how does the *n*-th term of the sequence $\frac{2}{2}, \frac{3}{4}, \frac{4}{6}, \frac{5}{8}, \frac{6}{10}, \frac{7}{12}, \frac{8}{14}, \frac{9}{16}, \frac{10}{18}, \dots$ behave as $n \to \infty$? $a_n = \frac{n+1}{2n} = \frac{1}{2} + \frac{1}{2n}$ tends toward $\frac{1}{2}$ as $n \to \infty$.

We say a sequence $\{a_n\}$ converges to the limit *L*, and write $\lim_{n \to \infty} a_n = L \quad \text{if:}$

• "we can make *a_n* as close as we like to *L* by taking *n* large enough"; that is,

• for every $\epsilon > 0$, there is an integer N such that

$$n > N \implies |a_n - L| < \varepsilon$$
 .

If a sequence does not converge to a limit, we say it **diverges**. (If $\lim_{n\to\infty} a_n = \pm \infty$ we may say the sequence *diverges to* $\pm \infty$.)

- limits of sequences obey all the same rules as limits of functions
- if $a_n = f(n)$ where f = f(x) is a function on the real line and $\lim_{x\to\infty} f(x) = L$, then $\lim_{n\to\infty} a_n = L$ 4/12

Determine if each sequence converges, and if so find its limit:

$$1. \left\{ \frac{n^2}{n^2 + n + 1} \right\}$$

2.
$$a_n = \cos\left(\frac{1}{n}\right)$$
, $a_n = \cos(n\pi)$, $a_n = \cos(2n\pi)$

3.
$$\{r^n\}_{n=1}^{\infty}$$
: $r, r^2, r^3, r^4, r^5, \ldots$

4.
$$a_n = \ln(n+1) - \ln(n)$$

5.
$$a_n = \left(1 + \frac{1}{n}\right)^n$$

6.
$$\left\{\frac{n!}{n^n}\right\}$$

1.
$$\left\{\frac{n^2}{n^2+n+1}\right\}$$
: $\lim_{n\to\infty} \frac{n^2}{n^2+n+1} = \lim_{n\to\infty} \frac{1}{1+\frac{1}{n}+\frac{1}{n^2}} = \frac{1}{1+0+0} = 1$
2. $a_n = \cos\left(\frac{1}{n}\right)$, $a_n = \cos(n\pi)$, $a_n = \cos(2n\pi)$:
 $\lim_{n\to\infty} \cos\left(\frac{1}{n}\right) = \cos(0) = 1$,
 $\left\{\cos(n\pi)\right\} = \left\{-1, 1, -1, 1, -1, 1, \ldots\right\}$ diverges
 $\left\{\cos(2n\pi)\right\} = \left\{1, 1, 1, 1, 1, 1, \ldots\right\}$ converges to 1
3. $\{r^n\}_{n=1}^{\infty}$: $r, r^2, r^3, r^4, r^5, \ldots$
diverges if $r \le -1$ or $r > 1$, converges to 1 if $r = 1$,
and if $|r| < 1$, $\lim_{n\to\infty} r^n = 0$
4. $a_n = \ln(n+1) - \ln(n)$: $a_n = \ln\left(\frac{n+1}{n}\right) = \ln\left(1+\frac{1}{n}\right)$ converges
to $\ln(1) = 0$
5. $a_n = \left(1+\frac{1}{n}\right)^n \lim_{n\to\infty} \ln(a_n) = \lim_{n\to\infty} \frac{\ln(1+\frac{1}{n})}{\frac{1}{n}} = \lim_{n\to\infty} \frac{-\frac{1}{n^2}}{(1+\frac{1}{n})(-\frac{1}{n^2})}$
 $\left(|'Hôpita|\right) = \lim_{n\to\infty} \frac{1}{1+\frac{1}{n}} = 1$, so $\lim_{n\to\infty} a_n = e^1 = e$
6. $\left\{\frac{n!}{n^n}\right\}$ $0 \le a_n = \left[\frac{n}{n}\frac{n-1}{n}\frac{n-2}{n}\cdots\frac{2}{n}\right]\frac{1}{n} \le \frac{1}{n}$, so by 'squeeze',
 $\lim_{n\to\infty} a_n = 0$.

Series

Can we add together together infinitely many numbers?

Try $1 + 1 + 1 + 1 + 1 + 1 + \cdots$? sums: 1 2 3 4 5 ... No! The running sum increases to ∞ .

If A is twice as fast as T, the fraction of the initial gap to T that A makes up is:

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \cdots$ sums: 0.500 0.750 0.875 0.938 0.969 0.984 0.992 ...

The running sum seems to settle down, tending, perhaps, toward 1.

A series (or infinite series) is an expression of the form

$$\sum_{j=1}^{\infty} a_j = a_1 + a_2 + a_3 + a_4 + a_5 + \cdots$$

We make sense of a series by considering its partial sums:

$$s_n := \sum_{j=1}^n a_j = a_1 + a_2 + \dots + a_{n-1} + a_n.$$

The partial sums themselves form a sequence of numbers:

$$s_1 = a_1, \quad s_2 = a_1 + a_2, \quad s_3 = a_1 + a_2 + a_3, \quad s_4 = \cdots$$

Let
$$s_n = a_1 + a_2 + \ldots + a_{n-1} + a_n$$
 be the *n*-th partial sum of
a series $\sum_{j=1}^{\infty} a_j$. We say this series **converges** to the sum *s* if
 $\lim_{n \to \infty} s_n = s$. Then we write $\sum_{j=1}^{\infty} a_j = s$.
If $\lim_{n \to \infty} s_n$ does *not* exist, we say the series **diverges**.

8/12

Examples

• $\sum_{k=1}^{\infty} k = 1 + 2 + 3 + 4 + 5 + \cdots$

 $s_1 = 1, s_2 = 1 + 2 = 3, s_3 = 1 + 2 + 3 = 6, \dots, s_n = \frac{1}{2}n(n+1)$

and $\lim_{n\to\infty} \frac{1}{2}n(n+1)$ does not exist $(=+\infty)$, so $\sum_{k=1}^{\infty} k$ diverges

• $\sum_{j=1}^{\infty} (-1)^j = -1 + 1 - 1 + 1 - 1 + 1 - \cdots$ sequence $\{s_n\}$ of partial sums $\{-1, 0, -1, 0, -1, ...\}$ does not converge, so $\sum_{j=1}^{\infty} (-1)^j$ diverges

These two series cannot possibly converge for a simple reason: the terms (the amount we add at each step) don't tend to zero!

Theorem: if
$$\sum_{j=1}^{\infty} a_j$$
 converges, then $\lim_{j \to \infty} a_j = 0$.

Proof:
$$s_n = \sum_{j=1}^n a_n$$
 (*n*-th partial sum). Then $s_n - s_{n-1} = a_n$, so $\lim_{n\to\infty} a_n = \lim_{n\to\infty} s_n - \lim_{n\to\infty} s_{n-1} = s - s = 0$. \Box

We can rephrase this as a simple "test" for convergence of a series:

If
$$\lim_{k\to\infty} a_k \neq 0$$
 (or does not exist), then $\sum_{k=1}^{\infty} a_k$ diverges.

Example: $\sum_{k=1}^{\infty} \frac{k(k+2)}{(k+3)^2}$: $\lim_{k \to \infty} \frac{k(k+2)}{(k+3)^2} = \lim_{k \to \infty} \frac{k^2 + 2k}{k^2 + 6k + 9}$ = $\lim_{k \to \infty} \frac{1 + \frac{2}{k}}{1 + \frac{6}{k} + \frac{9}{k^2}} = 1 \neq 0$, so this series diverges.

Warning: this test does not work in the opposite direction! There are series whose terms go to zero, but the series still fails to converge. An example is the "harmonic series"

$$\sum_{j=1}^{\infty} \frac{1}{j} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$
 (more on this later...)

Geometric Series

A geometric series (with "common ratio" r) is

$$a + ar + ar^{2} + ar^{3} + ar^{4} + \cdots = \sum_{j=1}^{\infty} ar^{j-1} = \sum_{j=0}^{\infty} ar^{j}$$

Examples we've already seen today:

• r = 1, a = 1: $\sum_{j=0}^{\infty} 1 \cdot (1)^j = 1 + 1 + 1 + \cdots$ diverges

For which values of r does the geometric series

$$a+ar+ar^2+ar^3+ar^4+\cdots = a(1+r+r^2+r^3+r^4+\cdots) = \sum_{j=1}^{\infty} ar^{j-1}$$

converge? And to what sum?

First test: is
$$\lim_{j \to \infty} ar^{j-1} = 0$$
? Only if $-1 < r < 1$.

If -1 < r < 1, we compute the partial sums (blackboard):

$$s_n = \sum_{j=1}^n ar^{j-1} = a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(1-r^n)}{1-r}$$

and so $\lim_{n\to\infty} s_n = \frac{a}{1-r}$. Summary:

The geometric series
$$\sum_{j=1}^{\infty} ar^{j-1} = a + ar + ar^2 + ar^3 + ar^4 + \cdots$$

• converges, if $|r| < 1$, with $\sum_{j=1}^{\infty} ar^{j-1} = \frac{a}{1-r}$
• diverges, if $|r| \ge 1$