Probability: Continuous Random Variables

... last time . . .: a continuous random variable X
(taking values in an interval (a, b), possibily $(-\infty, \infty)$)

- has a probability density function f :

$$
P\left(x_{1} \leq X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x
$$

- and a (cumulative) distribution function

$$
F(x)=P(X<x)=\int_{a}^{x} f(t) d t, \quad \text { so } f(x)=F^{\prime}(x)
$$

- the mean (or expected value) of X is

$$
\mu=\bar{x}=\int_{a}^{b} x f(x) d x
$$

- some famous examples: uniform: $f(x)=\frac{1}{b-a}$ for $a \leq x \leq b$; exponential; normal (coming soon)

The Median of a Probability Density Function

The median of a continuous random variable X is the value $x_{\text {med }}$ such that

$$
P\left(X<x_{\text {med }}\right)=P\left(X>x_{\text {med }}\right)=\frac{1}{2}
$$

In terms of the probability density function f of X,

$$
\int_{a}^{x_{\text {med }}} f(x) d x=\int_{x_{\text {med }}}^{b} f(x) d x=\frac{1}{2}
$$

and in terms of the distribution function F of X,

$$
F\left(x_{\text {med }}\right)=\frac{1}{2} \text {. }
$$

Can you interpret the mean and median geometrically/physically in terms of the graph of the density function f ?

Example: the Exponential Distribution

The Exponential Distribution: probability density function is

$$
f(t)= \begin{cases}0 & t<0 \\ \frac{1}{\mu} e^{-\frac{t}{\mu}} & t \geq 0\end{cases}
$$

waiting time for service, lightbulb failure time, radioactive decay, ...

Find its cumulative distribution function, its mean, and its median.

- for $t \geq 0, F(t)=\int_{0}^{t} \frac{1}{\mu} e^{-\frac{t}{\mu}} d t=-\left.e^{-\frac{t}{\mu}}\right|_{0} ^{t}=1-e^{-\frac{t}{\mu}}$
- $\bar{t}=\int_{0}^{\infty} t \frac{1}{\mu} e^{-\frac{t}{\mu}} d t=-\left.t e^{-\frac{t}{\mu}}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\frac{t}{\mu}} d t=-\left.\mu e^{-\frac{t}{\mu}}\right|_{0} ^{\infty}=\mu$
- $\frac{1}{2}=F\left(t_{\text {med }}\right)=1-e^{-\frac{t_{\text {med }}}{\mu}} \quad \Longrightarrow \quad t_{\text {med }}=\mu \ln (2) \quad$ (half-life!)

Example: the time T it takes for a certain radioactive atom to undergo decay is a continuous random variable with an exponential density function. If the mean decay time is 5000 years, what is the probability that the atom takes longer than 1000 years to decay?

- the probability density function for $t>0$ is $f(t)=C e^{-k t}$
- the distribution function is

$$
F(t)=\int_{0}^{t} C e^{-k y} d y=-\left.\frac{C}{k} e^{-k y}\right|_{0} ^{t}=\frac{C}{k}\left(1-e^{-k t}\right)
$$

- normalization: $1=F(\infty)=\frac{C}{k} \quad \Longrightarrow \quad C=k$
- mean: $\mu=\int_{0}^{\infty} t k e^{-k t} d t=-\left.t e^{-k t}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-k t} d t=\frac{1}{k}$
- so $k=\frac{1}{5000}$
- $P(T>1000)=1-F(1000)=1-\left(1-e^{-\frac{1}{5}}\right)=e^{-\frac{1}{5}} \approx 0.82$

Variance and Standard Deviation

The variance of a continuous random variable X, taking values in (a, b), with probability density function $f(x)$, and with mean μ, is

$$
\sigma^{2}=\operatorname{var}[X]=\int_{a}^{b}(x-\mu)^{2} f(x) d x
$$

and its standard deviation is

$$
\sigma=\sqrt{\operatorname{var}[X]} .
$$

Example: find the mean, variance, and standard deviation of a number chosen randomly and uniformly from an interval $[0, N]$. How likely is the number to be within one SD of the mean?

- density function is constant $f(x)=\frac{1}{N}$ for $0 \leq x \leq N$
- by symmetry, mean is $\frac{N}{2}$ (or compute $\mu=\int_{0}^{N} \frac{1}{N} x d x=\frac{N}{2}$)
- $\sigma^{2}=\int_{0}^{N} \frac{1}{N}\left(x-\frac{N}{2}\right)^{2}=\int_{0}^{N}\left(\frac{x^{2}}{N}-x+\frac{N}{4}\right)=N^{2}\left(\frac{1}{3}-\frac{1}{2}+\frac{1}{4}\right)=\frac{N^{2}}{12}$
- $\sigma=\frac{N}{\sqrt{12}}$
- $P\left(\frac{N}{2}-\frac{N}{\sqrt{12}}<X<\frac{N}{2}+\frac{N}{\sqrt{12}}\right)=\int_{\frac{N}{2}-\frac{N}{\sqrt{12}}}^{\frac{N}{N}+\frac{N}{N}} d x=\frac{2}{\sqrt{12}} \approx 0.58$

Example: The Normal Distribution

The probability density function

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

describes a continuous random variable, taking values in $(-\infty, \infty)$, with a normal (or Gaussian) distribution, denoted $N\left(\mu, \sigma^{2}\right)$. annual rainfall, math midterm test scores, heights,...

Exercise: given that it is normalized, $\int_{-\infty}^{\infty} f(x) d x=1$, verify that its mean (and median) is μ, and its variance is σ^{2}.

Special case $N(0,1)$ is the standard normal distribution:

$$
\begin{gathered}
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} . \quad \text { Its distribution function is } \\
F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t \quad\left(=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right)
\end{gathered}
$$

Exercise: what is the probability a (standard) normal random variable lies within 1 SD of its mean? $P(-1<X<1)$
$=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-\frac{x^{2}}{2}} d x=F(1)-F(-1)=\operatorname{erf}\left(\frac{1}{\sqrt{2}}\right) \approx 0.68$

