Science One Math

April 3, 2019

Taylor series

If f has a power series representation $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ then $c_{n}=\frac{f^{(n)}(a)}{n!}$. We want the series to converge to $f(x)$.

Taylor series

a power series representation of a function

Theorem: If f has a power series representation at a, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

then the sequence generating the coefficients of the series is

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

The series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ is called the Taylor series of f at a. f is called analytic on the convergence interval of its Taylor series.

Some common Maclaurin series (Taylor series centred at 0)

$\cdot \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}-1<x<1$

- $e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ all x
- $\sin (x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} x^{2 n+1}$ all x
- $\cos (x)=1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!} x^{2 n}$ all x
- $\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1} x^{n+1}-1<x \leq 1$
- $\arctan (x)=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)} x^{2 n+1}-1 \leq x \leq 1$

Recall: operations on power series (provided it converges)

- Changing variable
- Multiplying and adding series
- Differentiating term by term
- Integrating term by term
E.g. Find the MacLaurin series for $f(x)=x^{3} e^{-3 x^{2}}$.

$$
x^{3} e^{-3 x^{2}}=x^{3} \sum_{n=0}^{\infty} \frac{\left(-3 x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} x^{3} \frac{(-3)^{n} x^{2 n}}{n!}=\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!} x^{2 n+3}
$$

Stuff you can do with Taylor Series: compute integrals

(April 2018) Suppose the distance $R \geq 0$ of a quantum particle from a certain point is a random variable described by the probability density function $\quad f(r)=\frac{2}{\sqrt{\pi}} e^{-r^{2}}$
Write an integral giving the probability that the particle is a distance no more than 1 from the point, and express it as an infinite series expression.

Stuff you can do with Taylor Series: compute integrals

(April 2018) Suppose the distance $R \geq 0$ of a quantum particle from a certain point is a random variable described by the probability density function

$$
f(r)=\frac{2}{\sqrt{\pi}} e^{-r^{2}}
$$

Write an integral giving the probability that the particle is a distance no more than 1 from the point, and express it as an infinite series expression.

$$
\begin{gathered}
P(0<R<1)=\int_{0}^{1} \frac{2}{\sqrt{\pi}} e^{-r^{2}} d r=\int_{0}^{1} \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{1}{n!}(-1)^{n}(r)^{2 n} d r= \\
\left.=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{1} r^{2 n} d r=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{r^{2 n+1}}{2 n+1} \right\rvert\, \begin{array}{l}
r=1 \\
r=0
\end{array}=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{1}{2 n+1}
\end{gathered}
$$

Stuff you can do with Taylor Series: compute integrals

Problem: (Final 2016) Find the Taylor series centred at $x=0$ of

$$
\begin{gathered}
J(x)=\int_{0}^{x} \frac{e^{t}-1}{t} d t . \\
\lim _{z \rightarrow 0^{+}} \int_{z}^{x} \frac{e^{t}-1}{t} d t=\lim _{z \rightarrow 0^{+}} \int_{z}^{x} \frac{\sum_{n=0}^{\infty} \frac{1}{n!} t^{n}-1}{t} d t=\lim _{z \rightarrow 0^{+}} \sum_{n=1}^{\infty} \int_{z}^{x} \frac{1}{n!} t^{n-1} d t= \\
=\sum_{n=1}^{\infty} \frac{1}{n!n} x^{n}-\lim _{z \rightarrow 0^{+}} \sum_{n=1}^{\infty} \frac{1}{n!n} z^{n}=\sum_{n=1}^{\infty} \frac{1}{n!n} x^{n}
\end{gathered}
$$

Stuff you can do with Taylor Series: compute integrals

 The probability density function $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$ describes the normal distribution (with mean 0 and standard deviation 1).Problem: Find the probability that a normally distributed random variable lies within one standard deviation of the mean.

Stuff you can do with Taylor Series: compute integrals

The probability density function $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$ describes the normal distribution (with mean 0 and standard deviation 1).
Problem: Find the probability that a normally distributed random variable lies within one standard deviation of the mean.

$$
\begin{aligned}
& \quad P(-1<X<1)=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-\frac{x^{2}}{2}} d x=\sqrt{\frac{2}{\pi}} \int_{0}^{1} \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{x^{2}}{2}\right)^{n} d x \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}}(x)^{2 n} d x=\sqrt{\frac{2}{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}} \int_{0}^{1} x^{2 n} d x \\
& =\left.\sqrt{\frac{2}{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}} \frac{x^{2 n+1}}{2 n+1}\right|_{0} ^{1}=\sqrt{\frac{2}{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}(2 n+1)}=\sqrt{\frac{2}{\pi}}\left(1-\frac{1}{6}+\frac{1}{40}-\cdots\right) \\
& \sqrt{\frac{2}{\pi}} \approx 0.80, \quad \sqrt{\frac{2}{\pi}}\left(1-\frac{1}{6}\right) \approx 0.66, \quad \sqrt{\frac{2}{\pi}}\left(1-\frac{1}{6}+\frac{1}{40}\right) \approx \mathbf{0 . 6 8}
\end{aligned}
$$

Stuff you can do with Taylor Series: compute sums of series of numbers

Problem: (Final 2017) Find the sum of the series

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2} \frac{1}{2!}+\left(\frac{1}{2}\right)^{3} \frac{1}{3!}+\left(\frac{1}{2}\right)^{4} \frac{1}{4!}+\cdots+\left(\frac{1}{2}\right)^{n} \frac{1}{n!} \cdots
$$

(part b) Find the sum of $1+\frac{1}{2} \cdot 2+\frac{1}{4} \cdot 3+\cdots+\frac{n}{2^{n-1}}+\cdots$

Stuff you can do with Taylor Series: compute sums of series of numbers

Problem: (Final 2017) Find the sum of the series

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2} \frac{1}{2!}+\left(\frac{1}{2}\right)^{3} \frac{1}{3!}+\left(\frac{1}{2}\right)^{4} \frac{1}{4!}+\cdots+\left(\frac{1}{2}\right)^{n} \frac{1}{n!} \cdots
$$

Recall

$$
e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

Then $e^{1 / 2}=1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2} \frac{1}{2!}+\left(\frac{1}{2}\right)^{3} \frac{1}{3!}+\left(\frac{1}{2}\right)^{4} \frac{1}{4!}+\cdots$
(part b) Find the sum of $1+\frac{1}{2} \cdot 2+\frac{1}{4} \cdot 3+\cdots+\frac{n}{2^{n-1}}+\cdots$

Stuff you can do with Taylor Series: compute sums of series of numbers

Problem: (Final 2017) Find the sum of the series

$$
1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2} \frac{1}{2!}+\left(\frac{1}{2}\right)^{3} \frac{1}{3!}+\left(\frac{1}{2}\right)^{4} \frac{1}{4!}+\cdots+\left(\frac{1}{2}\right)^{n} \frac{1}{n!} \cdots
$$

Recall

$$
e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

Then

$$
e^{1 / 2}=1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2} \frac{1}{2!}+\left(\frac{1}{2}\right)^{3} \frac{1}{3!}+\left(\frac{1}{2}\right)^{4} \frac{1}{4!}+\cdots
$$

(part b) Find the sum of $1+\frac{1}{2} \cdot 2+\frac{1}{4} \cdot 3+\cdots+\frac{n}{2^{n-1}}+\cdots$
$\sum_{n=1}^{\infty} n(x)^{n-1}=\frac{d}{d x} \sum_{n=0}^{\infty}(x)^{n}=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}} \quad$ eval. at $x=\frac{1}{2}$

Stuff you can do with Taylor Series: compute π

Compute π using the sum of $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)} x^{2 n+1}$ for $x=1$.
We know $\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)} x^{2 n+1}$ converges for $-1 \leq x \leq 1$.
Then, for $x=1$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)}=\arctan (1)=\frac{\pi}{4} \\
& \pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots\right)
\end{aligned}
$$

Slow convergence (200 terms to get value correct to 2 decimal digits!).
Faster to compute $\pi=6 \arctan \left(\frac{1}{\sqrt{3}}\right)=6 \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)} \frac{1}{(\sqrt{3})^{2 n+1}}$ (can get 6 decimal places with ten terms!)

The algebra of convergent series

Can a convergent series be manipulated as a finite sum?
Yes, if it converges absolutely, otherwise no!

The delicacy of conditionally convergent series
If a series converges only conditionally, the order of the terms is important.

$$
\log (1+1)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9} \cdots=\ln 2
$$

Rearrange

$$
\begin{aligned}
& \left(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8} \cdots\right)+\left(\frac{1}{3}-\frac{1}{6}-\frac{1}{12} \cdots\right)+\left(\frac{1}{5}-\frac{1}{10}-\frac{1}{20} \cdots\right) \\
& \left(1-\sum\left(\frac{1}{2}\right)^{n}\right)+\frac{1}{3}\left(1-\sum\left(\frac{1}{2}\right)^{n}\right)+\frac{1}{5}\left(1-\sum\left(\frac{1}{2}\right)^{n}\right)+\cdots \quad \text { we get } 0 \neq \ln 2 \\
& \rightarrow 0 \\
& (1+0 \\
& \text { cannot rearrange th }
\end{aligned}
$$

Stuff you can do with Taylor Series: make approximations

Approximate the E-field at distance $D \gg d$ from a dipole

- $E=\frac{k q}{D^{2}}-\frac{k q}{(D+d)^{2}}=\frac{k q}{D^{2}}\left(1-\frac{1}{\left(1+\frac{d}{D}\right)^{2}}\right)$
$\cdot \frac{1}{(1+x)^{2}}=-\frac{d}{d x} \frac{1}{1+x}=-\frac{d}{d x}\left(1-x+x^{2}-x^{3}+\cdots\right)=1-2 x+3 x^{2}-\cdots$
- $E=\frac{k q}{D^{2}}\left(1-\left[1-2 \frac{d}{D}+3\left(\frac{d}{D}\right)^{2}-\cdots\right]\right)=\frac{2 k q d}{D^{2}}-\frac{3 k q d^{2}}{D^{4}}+\cdots$

Stuff you can do with Taylor series: make approximations

Approximate the E-field at distance $D \gg d$ from a dipole (figure):

- $E=\frac{k q}{D^{2}}-\frac{k q}{(D+d)^{2}}=\frac{k q}{D^{2}}\left(1-\frac{1}{\left(1+\frac{d}{D}\right)^{2}}\right)$
- $\frac{1}{(1+x)^{2}}=-\frac{d}{d x} \frac{1}{1+x}=-\frac{d}{d x}\left(1-x+x^{2}-x^{3}+\cdots\right)$

$$
=1-2 x+3 x^{2}-\cdots
$$

- $E=\frac{k q}{D^{2}}\left(1-\left[1-2 \frac{d}{D}+3\left(\frac{d}{D}\right)^{2}-\cdots\right]\right)=\frac{2 k q d}{D^{3}}-\frac{3 k q d^{2}}{D^{4}}+\cdots$

Yet more stuff you can do with Taylor series

(...this is not going to be on the exam...)

Stuff you can do with Taylor Series: solve ODEs

Solve the ODE initial value problem : $y^{\prime}+y=x, \quad y(0)=0$.

- Try power series $y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots$
- Then $y^{\prime}=c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots$
- Solve $x=y^{\prime}+y=\left(c_{1}+c_{0}\right)+\left(2 c_{2}+c_{1}\right) x+\left(3 c_{3}+c_{2}\right) x^{2}+\cdots$
- So choose $c_{1}+c_{0}=0, \quad 2 c_{2}+c_{1}=1, \quad 3 c_{3}+c_{2}=0, \ldots$
- So $c_{1}=-c_{0}, \quad c_{2}=\frac{1}{2}-\frac{c_{1}}{2}=\frac{1}{2}+\frac{c_{0}}{2}, \quad c_{3}=-\frac{c_{2}}{3}=-\frac{1}{6}-\frac{c_{0}}{6}$
- $y(0)=0 \Longrightarrow c_{0}=0$, so $c_{1}=0, c_{2}=\frac{1}{2}, c_{3}=-\frac{1}{6}, \ldots$

$$
\Rightarrow y(x)=\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\ldots
$$

(actual solution $y(x)=x-1+e^{-x}$)

Stuff you can do with Taylor Series: $e^{i x}$

- Complex numbers: $z=a+i b$. How does i work?
- $i^{2}=-1, \quad i^{3}=(-1) i=-i, \quad i^{4}=(-i) i=1, \quad i^{5}=i, \ldots$.
- $e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\frac{1}{5!} x^{5}+\cdots$
- $e^{i x}=1+i x+\frac{1}{2} i^{2} x^{2}+\frac{1}{3!} i^{3} x^{3}+\frac{1}{4!} i^{4} x^{4}+\frac{1}{5!} i^{5} x^{5}+\cdots$

$$
=1+i x-\frac{1}{2} x^{2}-\frac{1}{3!} i x^{3}+\frac{1}{4!} x^{4}+\frac{1}{5!} i x^{5}+\cdots
$$

$$
=\left(1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}-\cdots\right)+i\left(x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\right)
$$

$$
=(\quad \cos x \quad)+i(\quad \sin x \quad)
$$

- Conclusion $e^{i x}=\cos (x)+i \sin (x)$

Euler's formula

