Science One Math

April 1, 2019

What we learned about power series so far...

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

- Convergence occurs on a symmetric interval centered at $x=a$, (interval of convergence)
- The sum of a convergent power series $\sum c_{n}(x-a)^{n}$ is a function of x.
- We can manipulate power series to build functions.

Power series

Which of these are power series?
i) $\sum_{n=1}^{\infty} \ln (n)(2 x+5)^{n}$
iii) $\sum_{n=1}^{\infty} \frac{(2 n-1)!}{(2 n)!}(x)^{2 n+1}$
ii) $\sum_{n=0}^{\infty} n!(\pi-x)^{n}$
iv) $\sum_{n=1}^{\infty} \frac{(-2)^{n} \sin (n!x)}{n^{2}}$
A) i and $i i$
C) i and iii
E) all of them
B) ii and iii
D) i, ii, and iii

Power series

Which of these are power series?
i) $\sum_{n=1}^{\infty} \ln (n)(2 x+5)^{n}$
iii) $\sum_{n=1}^{\infty} \frac{(2 n-1)!}{(2 n)!}(x)^{2 n+1}$
ii) $\sum_{n=0}^{\infty} n!(\pi-x)^{n}$
iv) $\sum_{n=1}^{\infty} \frac{(-2)^{n} \sin (n!x)}{n^{2}}$
A) i and $i i$
C) i and $i i i$
E) all of them
B) ii and iii
D) i, ii, and iii

Manipulating power series

Careful-some manipulations may change the interval of convergence.

- Making a change of variable \rightarrow shifts the centre of the series
- Multiplying by a factor
\rightarrow changes interval of convergence
- Adding and subtracting

- Multiplying and dividing
- Differentiate term by term
- Integrate term by term
does not change interval of convergence (may change convergence at endpoints)

Manipulating power series

- Making a change of variable
- Multiplying by a factor

$$
\text { e.g. } \begin{aligned}
\frac{4 x^{12}}{1+3 x}= & 4 x^{12} \cdot \frac{1}{1-(-3 x)}=4 x^{12}\left(1+(-3 x)+(-3 x)^{2}+(-3 x)^{3}+\cdots\right) \\
& \frac{4 x^{12}}{1+3 x}=\sum_{n=0}^{\infty} 4 x^{12}(-3 x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} 4 \cdot 3^{n} x^{12+n}
\end{aligned}
$$

Gallery of functions we expressed as power series using some manipulations of $\sum_{n=0}^{\infty} x^{n}$

$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $-1<x<1$
$\begin{array}{ll}\frac{1}{1+x}=\sum_{n=0}^{\infty}(-x)^{n} \quad \text { for }-1<x<1 & \text { rational, logarithmic, inverse trig. } \\ \frac{3 x}{2-x}=\sum_{n=0}^{\infty} \frac{3}{2^{n+1}} x^{n+1} \text { for }|x|<2 & \ldots \text { what about } e^{x}, \sin (x), \cos (x) \text { ? }\end{array}$
$\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}$ for $|x|<1$
$\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n} \quad$ for $-1<x \leq 1$
$\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad$ for $-1 \leq x \leq 1$

Most functions can be produced by manipulating $\sum x^{n}$...except...

... except important functions like $e^{x}, \sin (x), \cos (x)$.
\Rightarrow need a different strategy to build appropriate coefficients c_{n}.

More generally, we are interested in the following questions:

- what is the power series representation of a function?
- which functions have power series representations?

Observation: the coefficients of a power series follow a pattern!

$$
\begin{aligned}
& f(x)=\frac{1}{1-x} \\
& f^{\prime}(x)=(1-x)^{-2} \quad f^{\prime \prime}(x)=2(1-x)^{-3} \quad f^{\prime \prime \prime}(x)=6(1-x)^{-4} \\
& f(0)=1, \quad f^{\prime}(0)=1, \quad f^{\prime \prime}(0)=2, \quad f^{\prime \prime \prime}(0)=6 \\
& 1+x+x^{2}+x^{3}+\cdots=f(0)+f^{\prime}(0) \cdot x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{6} x^{3}+\cdots
\end{aligned}
$$

Taylor Polynomials

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Note $T_{n}(x)$ is the partial sum of the series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$.
Recall, a series converges to S if $\lim _{n \rightarrow \infty} S_{n}=S$, where S_{n} are the partial sums.

$$
\text { We want } \lim _{n \rightarrow \infty} T_{n}(x)=f(x)
$$

Recall, the error in approximating $f(x)$ with $T_{n}(x)$ is

$$
f(x)-T_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \quad \text { for some } c \text { between } a \text { and } x
$$

If we let the degree \boldsymbol{n} to go to infinity, does the error go to zero? Yes, depends on f and x

Example: Let $f(x)=e^{x}$. Does $R_{n}(x)$ approach zero for $n \rightarrow \infty$?
Where $R_{n}(x)=f(x)-T_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$

Example: Let $f(x)=e^{x}$. Does $R_{n}(x)$ approach zero for $n \rightarrow \infty$?
Where $R_{n}(x)=f(x)-T_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$

Answer:

- Build the Taylor polynomial at $a=0, T_{n}(x)=1+x+\frac{1}{2} x^{2}+\cdots+\frac{1}{n!} x^{n}$
- Then $e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}+R_{n}(x)$.
- Now fix x, then $\left|R_{n}(x)\right|=\frac{e^{c}}{(n+1)!}|x|^{n+1} \leq M \frac{|x|^{n+1}}{(n+1)!}$ for some constant $\mathrm{M}>0$
- observe $\lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{|x|}{(n+1)} \frac{|x|}{n} \ldots \frac{|x|}{2} \frac{|x|}{1}=0$ for any x
- Then by squeeze theorem $\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0$
$\Rightarrow \lim _{n \rightarrow \infty} T_{n}(x)=e^{x}$, that is $\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ converge to e^{x} for any x

Taylor series

a power series representation of a function

Theorem: If f has a power series representation at a, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

then the sequence generating the coefficients of the series is

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

The series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ is called the Taylor series of f at a.
f is called analytic on the convergence interval of its Taylor series.

Common Maclaurin series (Taylor series centred at 0)

- $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}$ for $-1<x<1$
- $e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for all x
- $\sin (x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} x^{2 n+1}$ for all x
- $\cos (x)=1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!} x^{2 n}$ for all x
- $\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1} x^{n+1}$ for $-1<x \leq 1$
- $\arctan (x)=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)} x^{2 n+1}-1 \leq x \leq 1$

Recall: operations on power series (provided it converges)

- Changing variable
- Multiplying by a factor
- Differentiating term by term
- Integrating term by term

Problem: Find the first few terms of the Taylor series centred at $x=0$ of $e^{\sin x}$.

Recall: operations on power series (provided it converges)

- Changing variable
- Multiplying by a factor
- Differentiating term by term
- Integrating term by term

Problem: Find the first few terms of the Taylor series centred at $x=0$ of $e^{\sin x}$. Recall $e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots$ and $\sin (x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots$
By substitution,

$$
\begin{gathered}
e^{\sin x}=1+\left(x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\cdots\right)+\frac{1}{2}\left(x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\cdots\right)^{2}+\cdots= \\
{[\text { combine like terms }] \quad=1+x+\frac{1}{2} x^{2}-\frac{1}{3!} x^{3}-\frac{1}{3!} x^{4}+\frac{1}{5!} x^{5} \cdots}
\end{gathered}
$$

