Quiz 4 (103/104) Individual

1. \textbf{TRUE} ; follows by invertible matrix theorem

\begin{align*}
A \text{ invertible} &\iff \text{columns of } A \text{ form a basis of } \mathbb{R}^n \\
A^T \text{ invertible} &\iff \text{columns of } A^T \text{ form a basis of } \mathbb{R}^n
\end{align*}

\[\text{columns of } A^T = \text{rows of } A \]

2. \textbf{FALSE};

Take \(\mathbb{R}^2 \): its subspaces are \(\{0\}^2 \), \(\mathbb{R}^2 \) and lines through the origin.

Union of two lines through the origin is neither \(\{0\} \), nor \(\mathbb{R}^2 \) nor a line through origin.
Alternatively: the union of two lines through origin is not closed under addition.

\[u \in H_1 \cup H_2 \]
\[v \in H_1 \cup H_2 \]
\[u + v \notin H_1 \cup H_2 \]

(3) \[\text{answer: } \]
\[H_3 \text{ only} \]

\[H_1: \text{ does not contain the origin} \]
\[(0,0,0,0) \notin H_1 \text{ b/c } 3 \cdot 0 + 10 \cdot 0 - 6 \cdot 0 + 2 \cdot 0 \neq 1 \]
so not a subspace

\[H_2: \text{ not closed under addition} \]
\[(1,-1,1,1) \in H_2 \text{ b/c } 1 \cdot 1 + (1) \cdot 1 = 0 \]
\[(2,1,3,-6) \in H_2 \text{ b/c } 2 \cdot 3 + 1 \cdot (-6) = 0 \]

but their sum \[(3,0,4,-5) \notin H_2 \text{ b/c } 3 \cdot 4 + 0 \cdot (-5) \neq 0 \]
so not a subspace
\[H_3 : \]
\[
\begin{align*}
3x_1 + 10x_2 - 6x_3 + 2x_4 &= 0 \\
x_2 - 5x_3 + x_4 &= 0
\end{align*}
\]

can be viewed as

\[
\text{Nul} \left(\begin{bmatrix} 3 & 10 & -6 & 2 \\ 0 & 1 & -5 & 1 \end{bmatrix} \right)
\]

so indeed a subspace.

\[\boxed{\text{Answer: } \begin{pmatrix} -8 \\ 5 \end{pmatrix}} \]

matrix of linear map \(T^{-1} \) is

\[
[T]^{-1} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}^{-1}
\]

\[
= \frac{1}{1 \cdot 3 - 2 \cdot 2} \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix}
\]

\[
= \frac{1}{-1} \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix}
\]

\[
= \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}
\]

matrix of \(x \mapsto S(T^{-1}(x)) \) is

\[
[S] \cdot [T]^{-1} = \begin{pmatrix} 2 & -1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -8 & 5 \\ 10 & -5 \end{pmatrix}
\]
5. **Answer:** \(16 \cdot \text{det}(A)\)

For a 4x4 matrix

\[
\text{det}(-2A) = (-2)^4 \text{det}(A)
\]

one factor of \(-2\) per each row

General Rule: A \(n \times n\) matrix, \(c\) a scalar

\[
\text{det}(cA) = c^n \text{det}(A)
\]

6. **Answer:** 1015

The Rank Theorem

\[
\dim \text{Nul}(A) + \text{rank}(A) = \frac{2015}{1000}
\]

so \(\text{rank}(A) = 2015 - 1000 = 1015\)
(7) \[\text{answer: (1), (2) and (3) (all equivalent to } A \text{ being invertible)} \]

(1) and (2) are equivalent to \(A \) being invertible
(by the invertible matrix theorem)

(3) says there exists an invertible matrix \(B \) such that \(BA \) is invertible (through lenses of the IMT)

If \(B \) is invertible and \(BA \) is invertible then
\[B^{-1} (BA) = (B^{-1}B)A = A \]
is invertible as well.
\[\begin{vmatrix} + & - & + & + \\ 0 & 0 & 0 & 0 \\ 0 & 2015 & 0 & 2020 \\ 3 & 2016 & 0 & 2019 & 0 \\ 0 & 2017 & 0 & 2020 & 4 \\ 0 & 2018 & 5 & 2021 & 0 \end{vmatrix} = -1 \cdot \begin{vmatrix} + & - & + & - \\ 0 & 0 & 2 & 0 \\ 3 & 0 & 2019 & 0 \\ 0 & 0 & 2020 & 4 \\ 0 & 5 & 2021 & 0 \end{vmatrix} \]

\[= (-1) \cdot 2 \begin{vmatrix} + & - \\ 3 & 0 & 0 & 4 \\ 0 & 5 & 0 \end{vmatrix} \]

\[= (1) \cdot 2 \cdot 3 \begin{vmatrix} 0 & 4 \\ 5 & 0 \end{vmatrix} \]

\[= (-1) \cdot 2 \cdot 3 \cdot (-20) = 120 \]