1) **Answer:** TRUE

This follows from The Invertible Matrix Theorem:

\[A \text{ is invertible } \iff A^T \text{ is invertible} \]

\[\iff \text{rank}(A^T) = n \]

\[(a \text{ way of saying that } \text{RREF}(A^T) = I_n) \]

2) **Answer:** TRUE

This follows from compatibility of definitions of a subspace and a linear transformation.

Want to show: if \(y_1, y_2 \in T(H) \) and \(c_1 \) and \(c_2 \) are scalars, then \(c_1 y_1 + c_2 y_2 \in T(H) \). (i.e. \(T(H) \) is closed under taking linear combinations.)
\[y_1 = T(x_1) \quad \text{for some } x_1 \in \mathbb{R}^n \]
\[y_2 = T(x_2) \quad \text{for some } x_2 \in \mathbb{R}^n \]

Then
\[c_1 y_1 + c_2 y_2 = c_1 T(x_1) + c_2 T(x_2) \]
\[= T(c_1 x_1 + c_2 x_2) \in T(H) \]

an element of \(\mathbb{R}^n \)

So we produced an element in \(\mathbb{R}^n \) whose image is precisely \(c_1 y_1 + c_2 y_2 \) which makes \(c_1 y_1 + c_2 y_2 \in T(H) \)

as desired.

(3) \(\boxed{\text{answer: } H_3 \text{ only}} \)

\(H_1 : \) does not contain the origin \(b/c \)
\[
(0,0,0,0) \notin H_1 \quad b/c \quad 0 - 7.0 + 11.0 - 5.0 \neq 1
\]
so not a subspace
H_2: not closed under addition

\[(1, 1, 1, 0) \in H_2 \text{ b/c } 1 \cdot 1 \cdot 0 = 0\]
\[(1, 1, 0, 1) \in H_2 \text{ b/c } 1 \cdot 0 \cdot 1 = 0\]

but their sum \[(2, 2, 1, 1) \notin H_2 \text{ b/c } 2 \cdot 1 \cdot 1 \neq 0\]

so not a subspace

H_3:

\[x_1 - 7x_2 + 11x_3 - 5x_4 = 0\]
\[x_2 - 3x_4 = 0\]

H_3 can be viewed as

\[\text{Nul } \left[\begin{array}{cccc} 1 & -7 & 11 & -5 \\ 0 & 1 & 0 & -3 \end{array} \right]\]

so indeed a subspace.
matrix of lin. trans. S^{-1}

$$[S]^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}^{-1}$$

$$= \frac{1}{1.5 - 2.3} \begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ (-1) \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$$

matrix of $x \mapsto S^{-1}(T(x))$

$$[S]^{-1} [T] = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ -1 & -3 \end{pmatrix}$$
$$\text{answer: } 16 \cdot \det(A)$$

for a 4×4 matrix

$$\det(2A) = 2^4 \cdot \det(A)$$

one factor of 2 per each row

General Rule: A $n \times n$ matrix, c a scalar

$$\det(cA) = c^n \det(A)$$

$$\text{answer: } 1016$$

The Rank Theorem \Rightarrow

$$\dim \text{ Nul}(A) + \text{rank}(A) = \frac{2016}{1000} \quad \# \text{ of columns}$$

so $\dim \text{ Nul}(A) = 2016 - 1000 = 1016$
answer: (1), (2) and (3)
(all equivalent to A being invertible)

(1) $\iff A$ invertible directly by
The Invertible Matrix Theorem

(2) $\iff A^T$ invertible $\iff A$ invertible

(3) says that there exists an invertible matrix B such that
BA is invertible

Then $B^{-1}(BA) = A$ must be invertible as well.
8. \[\text{answer: } -1 \]

This is a "triangular" matrix so keeping track of signs the value is \[(1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot 1 = -1 \]

Alternatively, follow the same strategy as for usual upper/lower triangular matrices (with respect to the main diagonal).