Version 1: Quiz Two (103/104), Oct 2

Problem 1: [1 point] True/False: If the equation \(A\bar{x} = \bar{b} \) is consistent then \(\bar{b} \) is in the set spanned by the columns of \(A \).

A: False B: True

Problem 2: [1 point] Suppose \(\bar{y} \) and \(\bar{z} \) are both solutions of \(A\bar{x} = \bar{b} \). True/False: All linear combinations of \(\bar{y} \) and \(\bar{z} \) also solve \(A\bar{x} = \bar{b} \).

A: False B: True

Problem 3: [1 point] Let \(M = (\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3) \) be a 2 \times 3 matrix with columns \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \). Suppose \(\vec{v}_3 = \vec{v}_1 - 2\vec{v}_2 \). Under what condition, if any, can we be sure that the equation \(M\bar{x} = \bar{b} \) consistent?

A: Never consistent. B: \(\bar{b} \in \text{span } (\vec{v}_1, \vec{v}_2) \). C: \(\bar{b} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \). D: \(\bar{b} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \). E: Always consistent.

Problem 4: [1 point] Choose \(r \) and \(s \) so that the columns of \(A \) span \(\mathbb{R}^3 \). \(A = \begin{pmatrix} 2 & 1 & -1 & 3 \\ 0 & 0 & 0 & 0 \\ -1 & -2 & r & s \end{pmatrix} \)

A: \(r = -3, s = -3 \) B: \(r = 0, s = -3 \) C: \(r = -3, s = 0 \) D: \(r = 2, s = -3 \) E: Impossible

Problem 5: [1 point] Starting with \(A = \begin{pmatrix} 3 & 2 & -1 & 3 \\ 4 & 3 & -1 & 4 \\ -2 & -3 & -1 & -2 \end{pmatrix} \), elementary row operations are used to reach reduced row echelon form. Which is correct?

A: \(\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \) B: \(\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \) C: \(\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \) D: \(\begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \) E: \(\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \)

Problem 6: [1 point] Let \(R \) be the reduced row echelon form of an invertible \(n \times n \) matrix \(A \). Then:

A: \(R \) is the identity matrix. B: \(R \) has at least one row of all zeros. C: We cannot tell without seeing \(A \). D: \(R \) is \(A^{-1} \). E: \(R \) is proportional to \(A^{-1} \).

Problem 7: [1 point] Suppose we want to graph the equations represented by the rows of the augmented matrix \(\begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 4 \end{pmatrix} \). What will they look like?

A: These equations represent two equations for the same plane. B: These equations represent three equations for the same plane. C: These equations represent two planes that have a line of points in common. D: The intersection of these linear equations is represented by a plane in \(\mathbb{R}^3 \). E: These equations cannot be represented geometrically.

Problem 8: [1 point] What is the solution to the system of equations represented with this augmented matrix \(\begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 4 \end{pmatrix} \)

A: \(x = 2; y = 3; z = 4 \) B: \(x = -1; y = 1; z = 1 \) C: There are an infinite number of solutions. D: There is no solution. E: We can’t tell without having the system of equations.