Problem 1: [1 point] Let \(M = (\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3) \) be a 2 \times 3 matrix with columns \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \). Suppose \(\vec{v}_3 = \vec{v}_1 - 2\vec{v}_2 \). Under what condition, if any, can we be sure that the equation \(M\vec{x} = \vec{b} \) is consistent?

A: Never consistent.
B: \(\vec{b} \in \text{span}(\vec{v}_1, \vec{v}_2) \).
C: \(\vec{b} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \).
D: \(\vec{b} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \).
E: Always consistent.

Problem 2: [1 point] Let \(N = (\vec{v}_1 \ \vec{v}_2) \) be a 3 \times 2 matrix with columns \(\vec{v}_1, \vec{v}_2 \). Under what condition, if any, can we be sure that the equation \(N\vec{x} = \vec{b} \) is consistent?

A: Never consistent.
B: \(\vec{b} = \vec{v}_1 + 2\vec{v}_2 \).
C: \(\vec{b} \neq \vec{0} \).
D: \(\vec{b} = \vec{v}_1 \times \vec{v}_2 \).
E: Always consistent.

Problem 3: [1 point] Let \(R \) be the reduced row echelon form of an invertible \(n \times n \) matrix \(A \). Then:

A: \(R \) is the identity matrix.
B: \(R \) has at least one row of all zeros.
C: We cannot tell without seeing \(A \).
D: \(R = A^{-1} \).
E: \(R \) is proportional to \(A^{-1} \).

Problem 4: [1 point] Which of the following matrices could you get from \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \) through elementary row operations?

A: All of these.
B: None of these.
C: \(\begin{pmatrix} 2 & 5 & 7 \\ 0 & 1 & 3 \\ 4 & 8 & 1 \end{pmatrix} \)
D: \(\begin{pmatrix} 3 & 1 & 5 \\ 2 & 0 & 3 \\ 3 & 3 & 1 \end{pmatrix} \)
E: \(\begin{pmatrix} -3 & 1 & 3 \\ -2 & 1 & 0 \\ 3 & 9 & 2 \end{pmatrix} \)

Problem 5: [1 point] Suppose we want to find the equation of the parabola that passes through the points (-1, 9), (1, 5), and (2, 12). What augmented matrix corresponding to a matrix-vector problem could we use to find the parabola?

A: \(\begin{pmatrix} -1 & 1 & 2 \\ 9 & 5 & 12 \end{pmatrix} \)
B: \(\begin{pmatrix} 1 & 1 & 1 & 9 \\ -1 & 1 & 2 & 5 \\ 1 & 1 & 4 & 12 \end{pmatrix} \)
C: \(\begin{pmatrix} 1 & -1 & 1 & 9 \\ 1 & 1 & 1 & 5 \\ 1 & 2 & 4 & 12 \end{pmatrix} \)
D: \(\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 9 & 5 & 12 \end{pmatrix} \)
E: \(\begin{pmatrix} 1 & 0 & 0 & 9 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 12 \end{pmatrix} \)