HOMEWORK 5 SOLUTIONS: MATH 215 Winter 2017

1. The functions sinh(t) and cosh(t) are defined by

\[\sinh(t) = \frac{1}{2} (e^t - e^{-t}) , \quad \cosh(t) = \frac{1}{2} (e^t + e^{-t}) . \]

You should check that you agree that sinh(0) = 0, cosh(0) = 1, cosh(t) = cosh(-t), sinh(t) = -sinh(-t) and

\[\frac{d}{dt} \sinh(t) = \cosh(t) , \quad \frac{d}{dt} \cosh(t) = \sinh(t) . \]

- (a) Verify (by plugging in) that \(y = e^{-kt} \), \(y = e^{kt} \) and \(y = A \sinh(k(t - t_0)) + B \cosh(k(t - t_0)) \) are solutions of \(y'' - k^2 y = 0 \) for all \(t > 0 \) and for all constants \(k > 0, t_0, A \) and \(B \).
- (b) Using sinh and cosh, find the solution \(y = y(t) \) to the following initial value problems:

\[
\begin{align*}
 y'' - 16y &= 0, \quad y(0) = 1, \quad y'(0) = 0 \\
 y'' - 9y &= 0, \quad y(3) = 1, \quad y'(3) = 0
\end{align*}
\]

For the second problem it is more convenient to look for a solution in the form \(y = A \sinh(k(t-t_0)) + B \cosh(k(t-t_0)) \) where \(k = 3 \) and \(t_0 = 3 \).

Solution:

- (a) Let \(y = e^{\pm kt} \), then \(y' = \pm ke^{\pm kt} \) and \(y'' = k^2 e^{\pm kt} \). Hence \(y'' - k^2 y = 0 \) is satisfied. Now since \(\sinh(k(t-t_0)) \) and \(\cosh(k(t-t_0)) \) are both linear combinations of \(e^{kt} \) and \(e^{-kt} \), it follows by the superposition principle that they are both solutions.

- (b) The solution to \(y'' - 16y = 0 \) can be written as \(y = c_1 \sinh(4t) + c_2 \cosh(4t) \). Now, from the properties of sinh(t) and cosh(t) given above, we get \(c_2 = 1 \) and \(c_1 = 0 \). Thus, the solution is \(y = \cosh(4t) = \frac{1}{2} (e^{4t} + e^{-4t}) \). The solution to \(y'' - 9y = 0 \) can be written as \(y = c_1 \sinh(3(t-3)) + c_2 \cosh(3(t-3)) \). Now, from the properties of sinh(t) and cosh(t) given above, we get \(c_2 = 1 \) and \(c_1 = 0 \). Thus, the solution is \(y = \cosh(3(t-3)) = \frac{1}{2} (e^{3(t-3)} + e^{-3(t-3)}) \).

2. Charging of a capacitor: Consider the RLC circuit, where the resistor, inductor and capacitor are in series with an external D.C. voltage source which is active for \(0 < t < T \) but is then disconnected from the circuit at \(t = T \). The fixed time \(T \) is called the switching time. Then, the charge \(Q(t) \) on the capacitor satisfies

\[LQ'' + RQ' + \frac{1}{C}Q = \begin{cases} V_0 & \text{for } 0 \leq t < T, \\
0 & \text{for } t \geq T, \end{cases} \]

where \(V_0 \) is a constant. Assume that \(Q(0) = Q'(0) = 0 \), and that \(R^2 > 4L/C \). Find the solution \(Q = Q(t) \) and sketch by hand two plots of \(Q(t) \), one for “large” \(T \) and one for “small” \(T \). Explain the result on physical terms.

Solution: Let \(Q = e^{rt} \) in the homogeneous problem to get \(Lr^2 + Rr + 1/C = 0 \), so that

\[r_{\pm} = -\frac{R}{2L} \pm \frac{\sqrt{R^2 - 4L/C}}{2L} . \]
The roots are real and negative since \(R^2 > 4L/C \). The particular solution is \(Q = CV_0 \) for \(0 < t < T \). Hence, we have

\[
Q(t) = \begin{cases}
 c_1 e^{r_+ t} + c_2 e^{r_- t} + CV_0 & \text{for } 0 \leq t < T, \\
 d_1 e^{r_+(t-T)} + d_2 e^{r_-(t-T)} & \text{for } t > T.
\end{cases}
\]

(1)

There are four constants to determine: \(c_1, c_2, d_1 \) and \(d_2 \). Satisfying the initial conditions we get two equations

\[
c_1 + c_2 + CV_0 = 0 \quad \text{and} \quad r_+ c_1 + r_- c_2 = 0.
\]

Thus,

\[
c_2 = -\frac{r_+ CV_0}{(r_+ - r_-)}, \quad c_1 = \frac{r_- CV_0}{(r_+ - r_-)}, \quad \text{where} \quad r_+ - r_- = \frac{\sqrt{(R^2 - 4L/C)}}{L}.
\]

(2)

Now we satisfy the conditions that \(Q \) and \(Q' \) are continuous at \(t = T \). This yields two equations for \(d_1 \) and \(d_2 \). We get

\[
d_1 + d_2 = c_1 e^{r_+ T} + c_2 e^{r_- T} + CV_0, \quad r_+ d_1 + r_- d_2 = c_1 r_+ e^{r_+ T} + c_2 r_- e^{r_- T}.
\]

We can solve for \(d_1 \) and \(d_2 \) to get

\[
d_1 = c_1 e^{r_+ T} - \frac{CV_0 r_-}{(r_+ - r_-)}, \quad d_2 = c_2 e^{r_- T} + \frac{CV_0 r_+}{(r_+ - r_-)}.
\]

(3)

Substituting (2) and (3) into (1) gives \(Q = Q(t) \). Notice that when \(T \) is large (i.e. \(r_+ T \gg 1 \) and \(r_- T \gg 1 \)), then we can neglect the exponential terms in (3). In addition, the exponential terms in the formula for \(Q(t) \), defined on the interval \(0 \leq t < T \), are insignificant when \(t \approx T \). Thus, the capacitor has had time to be almost fully charged and \(Q \approx CV_0 \) when \(t \approx T \). The plots of the solutions are shown below in Fig. 1 for \(T \) small (the capacitor is not fully charged) and for \(T \) large when the capacitor is fully charged. In both cases when \(t > T \), the charge on the capacitor leaks out as \(t \to \infty \) since the circuit has resistance.

![Figure 1: Plot of \(q(t) \) versus \(t \) for \(T = 5 \) (heavy solid curve) and \(T = 20 \) (solid curve). The parameters are \(C = V_0 = L = 1 \) and \(R = \sqrt{20} \).](image)

3. Solve \(y'' + 25y = \cos(5.6t) \) with \(y(0) = 0 \) and \(y'(0) = 0 \). Use Matlab/Octave (or similar) to make an accurate plot of the solution. What do you observe?
Solution: For the homogeneous problem let \(y = e^{rt} \). Then, \(r^2 + 25 = 0 \) so that \(r = \pm 5i \). The solution to the homogeneous problem is \(y = \sin(5t) \) or \(y = \cos(5t) \). Now calculate the particular solution. Let \(\tilde{y} \) solve
\[
\tilde{y}'' + 25\tilde{y} = e^{i\omega t}, \quad \omega = 5.6
\]
Then \(y = \text{Re}(\tilde{y}) \). Let \(\tilde{y} = Ae^{i\omega t} \). Substitute to get \(A(-\omega^2 + 25) = 1 \). Thus, \(A = 1/(25 - \omega^2) \). Thus, the particular solution is
\[
y_p = \text{Re} \left((25 - \omega^2)^{-1} e^{i\omega t} \right) = \frac{\cos(\omega t)}{25 - \omega^2}.
\]
The general solution is
\[
y = c_1 \cos(5t) + c_2 \sin(5t) + \frac{\cos(\omega t)}{25 - \omega^2}.
\]
Satisfying the initial conditions \(y(0) = y'(0) = 0 \), we get \(c_2 = 0 \), \(c_1 = -1/(25 - \omega^2) \). Thus, using a trig identity we can write
\[
y = \frac{1}{(25 - \omega^2)} [\cos(\omega t) - \cos(5t)] = \frac{1}{3.18} \sin(0.3t) \sin(5.3t).
\]
The solution, which exhibits the phenomenon of beats as described in class, is plotted below in Fig. 2.

![Figure 2: Plot of \(y(t) = \frac{10}{3.18} \sin(0.3t) \sin(5.3t) \) versus \(t \).](image)

4. (This is an Important Problem:) Consider \(y'' + py' + y = F_0 \sin(\omega t) \), where \(p > 0 \) and \(F_0 \) are constants. Use Matlab/Octave (or similar) to plot the amplitude of the steady-state (long-term) response as a function of \(\omega \) on the interval \(\omega > 0 \). Make these plots for several representative values of \(p \). Where is the amplitude a maximum as a function of \(\omega \)?

Solution: Let \(\tilde{y} \) satisfy
\[
\tilde{y}'' + p\tilde{y}' + \tilde{y} = F_0 e^{i\omega t}.
\]
Then $y_p = \text{Im}(\tilde{y})$. Substitute $\tilde{y} = Ae^{i\omega t}$ into (1) to get

$$A \left[(1 - \omega^2) + i p \omega \right] = F_0,$$

$$\rightarrow A = \frac{F_0}{(1 - \omega^2) + i p \omega}.$$

Thus,

$$y_p = \text{Im} \left[F_0 \frac{(1 - \omega^2) - i p \omega}{(1 - \omega^2)^2 + p^2 \omega^2} (\cos(\omega t) + i \sin(\omega t)) \right].$$

A simple calculation then yields

$$y_p = R(\omega) \cos(\omega t - \phi(\omega)),$$

where $R(\omega)$ and $\phi(\omega)$ satisfy

$$R(\omega) = \frac{F_0}{\left[(1 - \omega^2)^2 + p^2 \omega^2 \right]^{1/2}}, \quad \tan(\phi) = \frac{1 - \omega^2}{p \omega}, \quad \text{(*)}$$

with $\cos(\phi) < 0$. The amplitude of the steady-state response is $R(\omega)$. It has a maximum, on the interval $\omega \geq 0$, when the denominator in (*) has a minimum on this interval. Using a little calculus, we find that this occurs at $\omega = \omega_c$, where

$$\omega_c = \sqrt{1 - \frac{p^2}{2}}, \quad 0 < p < \sqrt{2}; \quad \omega_c = 0, \quad p \geq \sqrt{2}.$$

Thus, if the damping coefficient p is not too large (i.e. $p < \sqrt{2}$), then the system has its largest response at a frequency $\omega_c \neq 0$. The maximum amplitude $R(\omega_c)$ increases as p decreases and becomes unbounded as $p \to 0$. The frequency ω_c tends to the resonant frequency of 1 as $p \to 0$. When $F_0 = 1$, we plot $R(\omega)$ versus ω below in Fig. 3 for $p \approx 0$, for $p = 1$, $p = \sqrt{2}$ and $p > \sqrt{2}$.

![Figure 3: Plot of $R(\omega)$ in (*) versus ω for $p = 0.2$ (heavy solid curve), $p = 1.0$ (solid curve), $p = \sqrt{2}$ (dotted curve), and $p = 2$ (widely spaced dots).](image-url)
5. (Tuning a circuit) Consider an \(RLC \) circuit in series with an A.C. voltage source given by \(V(t) = -\cos t - 4/5 \cos(5t) \). Suppose that \(R = .1 \) Ohms, \(L = 1 \) Henry but that we are capable of adjusting the capacitance \(C \) of the capacitor.

- (i) Show that the current in the circuit satisfies
 \[
 I'' + 0.1I' + \frac{1}{C}I = \sin t + 4 \sin(5t)
 \]

- (ii) Calculate the steady-state (long-term) solution. This is the solution after any transient terms have decayed to zero.

- (iii) What are the critical values of \(C \) for which the steady-state current \(I \) will (roughly) be periodic with a frequency of either 1 or 5? Interpret this result in terms of the tuning of a circuit.

- (iv) Use Matlab/Octave (or similar) to plot the steady-state solution when \(C = 1 \), \(C = 1/25 \) and \(C = 1/81 \).

Solution:

- (i) The voltage drops across the three elements is equal to the applied voltage. This yields,
 \[
 LQ' + RQ + Q/C = -\cos t - \frac{4}{5} \cos(5t),
 \]
 where \(Q \) is the charge on the capacitor. Now let \(L = 1 \) Henry, \(R = .1 \) Ohm and note that \(I = Q' \), where \(I \) is the current flowing through the circuit. Thus, upon differentiating (1) we see that \(I \) satisfies (*)

- (ii) Let \(I_\omega(t) \) be the steady state response for
 \[
 I''_\omega + 0.1I'_\omega + \frac{1}{C}I_\omega = \sin(\omega t).\n \]
 Then, by linearity, the steady-state response for (*) is
 \[
 I(t) = I_1(t) + 4I_5(t).
 \]
 Notice that the solution to the homogeneous problem, (i.e. the transient response) will die out as \(t \to \infty \) since the circuit has resistance. Thus, as \(t \to \infty \), we will only observe the steady-state response. Now we calculate the particular solution for (2). Consider
 \[
 \tilde{I}_\omega'' + 0.1\tilde{I}_\omega' + \frac{1}{C}\tilde{I}_\omega = e^{i\omega t}.
 \]
 Let \(\tilde{I}_\omega = Ae^{i\omega t} \). Then \(I_\omega = \text{Im}(\tilde{I}_\omega) \). Substituting, we can determine \(A \) as
 \[
 A \left[\left(-\omega^2 + \frac{1}{C} \right) + 0.1i\omega \right] = 1, \quad \Rightarrow \quad A = \frac{\left(-\omega^2 + C^{-1} \right) - 0.1i\omega}{(\omega^2 - C^{-1})^2 + .01\omega^2}.
 \]
Taking the imaginary part, we get after a little algebra

\[I_\omega = \frac{\sin(\omega t + \phi(\omega))}{\triangle(\omega)}, \quad \triangle(\omega) \equiv \left((\omega^2 - C^{-1})^2 + 0.01\omega^2 \right)^{1/2}, \quad \tan(\phi(\omega)) = \frac{0.1\omega}{(\omega^2 - C^{-1})}, \]

where \(\cos(\phi) < 0 \). Hence, from (3), the steady-state response is

\[I(t) = \frac{\sin(t + \phi(1))}{\triangle(1)} + \frac{4\sin(5t + \phi(5))}{\triangle(5)}. \quad (4) \]

- (iii) From the formula above the response which oscillates with frequency 1 will be amplified when \(C = 1 \). We obtain a very large amplification of this term since the damping coefficient given by the resistance is very small. For this value of \(C \), the response which oscillates at a frequency of 5 will have a very small amplitude and hence will not be observed in a significant way. Alternatively, the term which oscillates with frequency 5 will be amplified when \(C \approx 1/25 \). For this value of \(C \), the response which oscillates at a frequency of 1 will have a very small amplitude and hence will not be observed in a significant way. Thus, by varying \(C \) the circuit can be tuned to respond to either of the two frequencies. When \(C = 1/81 \), the circuit does not respond to either of the two frequencies of 1 and 5 since both of these oscillations can be seen from (4) to have a very small amplitude.

- (iv) The plots are shown in Fig. 4 for three values of \(C \).

6. Often bumps like the one depicted below are built into roads to discourage speeding.
The figure suggests that a crude model of the vertical motion $y(t)$ of a car encountering the speed bump with speed V is given by:

$$
\begin{align*}
 y(t) &= 0 \quad \text{for } t \leq -L/2V \\
 my'' + ky &= \begin{cases}
 \cos(\pi V t / L) & \text{for } -L/2V \leq t \leq L/2V \\
 0 & \text{for } t \geq L/2V
 \end{cases}
\end{align*}
$$

(The absence of a damping term indicates that the car’s shock absorbers are broken.) Note that the equations are dependent on time only; as the speed is given as V, we can write space x in terms of time t: $x = Vt$.

(a) Solve this initial value problem; take $m = k = 1$ and $L = \pi$ for convenience. Thus show that the formula for oscillatory motion after the car has traversed the speed bump is $y(t) = A \sin(t)$, where A depends on the speed V.

(b) Use Matlab/Octave (or similar) to plot the amplitude $|A|$ of the solution $y(t)$ in part (a) versus the car’s speed V. From the graph, estimate the speed that produces the most violent shaking of the vehicle.

Solution:
(a) The solution of this problem can be broken up into 3 parts according to the time t:

$$
 y(t) = \begin{cases}
 y_1(t) & t \leq -\pi/2V \\
 y_2(t) & -\pi/2V \leq t \leq \pi/2V \\
 y_3(t) & t \geq \pi/2V
 \end{cases}
$$

where

$$
 \begin{align*}
 y_1(t) &= 0, \\
 \begin{cases}
 y_2'' + y_2 = \cos(Vt) \\
 y_2(-\pi/2V) = y_1(-\pi/2V) = 0 \\
 y_2'(-\pi/2V) = y_1'(-\pi/2V) = 0
 \end{cases}
 \end{align*}
\quad \text{and} \quad
\begin{align*}
 y_3'' + y_3 &= 0 \\
 y_3(\pi/2V) &= y_2(\pi/2V) = 0 \\
 y_3'(\pi/2V) &= y_2'(\pi/2V)
\end{align*}
$$

In the above we have taken $m = k = 1$ and $L = \pi$. Note that the initial condition in each initial value problem depends on the previous solution. Since $y_1(t)$ is given to be zero, and the problem asks about the car’s motion after it has traversed the speed bump (for $t \geq \pi/2V$, that is, the problem is to find the solution of the IVP for y_3), to solve this problem we have to:

(i) solve the IVP for y_2.
(ii) use y_2 to generate initial conditions for the IVP for y_3.
(iii) Solve the IVP for y_3.

(i) We want to solve
\[
\begin{cases}
y''_2 + y_2 = \cos(Vt) \\
y_2(-\pi/2V) = 0 \\
y_2(-\pi/2V) = 0
\end{cases}
\]
First we find the solution to the homogeneous equation \((y_2)_h'' + (y_2)_h = 0\). Its characteristic equation is
\[r^2 = 1\]
which has roots \(r = \pm i\), so the homogeneous solution is \((y_2)_h = C_1 \cos(t) + C_2 \sin(t)\). To find the particular solution to the inhomogeneous equation \((y_2)_p'' + (y_2)_p = \cos(Vt)\) pose the guess \((y_2)_p(x) = A \cos(Vt) + B \sin(Vt)\). Substituting the guess into the equation, noting that \((y_2)_p''(x) = -V^2 A \cos(Vt) - V^2 B \sin(Vt)\), we obtain \(A(1-V^2) \cos(Vt) + B(1-V^2) \sin(Vt) = \cos(Vt)\), and find that \(A = 1/(1-V^2)\) and \(B = 0\). The particular solution is \((y_2)_p(x) = \cos(Vt)/(1-V^2)\). The general solution is then \(y_2(t) = (y_2)_h(t) + (y_2)_p(t) \Rightarrow y_2(t) = C_1 \cos(t) + C_2 \sin(t) + \cos(Vt)/(1-V^2)\). Applying the initial conditions we find \(C_1 = V \sin(\pi/2V)/(V^2-1)\), \(C_2 = V \cos(\pi/2V)/(V^2-1)\), and the solution to the initial value problem:
\[
y_2(y) = \frac{V}{V^2 - 1} \left(\sin\left(\frac{\pi}{2V}\right) \cos(t) + \cos\left(\frac{\pi}{2V}\right) \sin(t) \right) + \frac{1}{1-V^2} \cos(Vt).
\]
Using the trig identity \(\sin(A + B) = \sin(A) \cos(B) + \sin(B) \cos(A)\), this can be re-written as:
\[
y_2(t) = \frac{1}{V^2 - 1} (V \sin(t + \frac{\pi}{2V}) - \cos(Vt)).
\]

(ii) Now we can generate the initial conditions for the IVP for \(y_3\):
\[
y_3\left(\frac{\pi}{2V}\right) = y_2\left(\frac{\pi}{2V}\right) = \frac{V}{V^2 - 1} \sin\left(\frac{\pi}{V}\right), \text{ and}
\]
\[
y_3'\left(\frac{\pi}{2V}\right) = y_2'\left(\frac{\pi}{2V}\right) = \frac{V}{V^2 - 1} \left(\cos(t + \frac{\pi}{2V}) + \sin(Vt) \right)|_{t=\pi/2V} = \frac{V}{V^2 - 1} (1 + \cos(\frac{\pi}{V}))
\]

(iii) Finally we solve the IVP for \(y_3\). We have \(y_3'' + y_3 = 0\); the solution to this homogeneous equation is \(y_3(t) = C_3 \cos(t) + C_4 \sin(t)\). like in (i). Applying the initial conditions we find:
\[
C_3 = 0 \text{ and } C_4 = \frac{2V}{V^2 - 1} \cos\left(\frac{\pi}{2V}\right).
\]
This step requires some algebraic manipulation and, depending on how you calculate \(C_3\) and \(C_4\), you might have to make use of the trig identities \(\sin(2a) = 2 \sin(a) \cos(a)\), or \(\cos(2a) = 2 \cos^2(a) - 1\), \(\cos(a) \cos(b) + \sin(a) \sin(b) = \cos(a-b)\), or \(\sin(a) \cos(b) - \sin(b) \cos(a) = \sin(a-b)\).

Thus we have found the formula for oscillatory motion after the car has traversed the speed bump is
\[
y_3 = \frac{2V}{V^2 - 1} \cos\left(\frac{\pi}{2V}\right) \sin(t),
\]
which is of the form \(y(t) = A \sin(t)\) where \(A = 2V \cos(\pi/2V)/(V^2-1)\) depends on the speed \(V\).
(b) We’re asked to plot the amplitude $|A|$ and estimate from the plot the speed V that produces the most violent shaking of the vehicle. In (a) we found

$$A = 2V \cos(\pi/2V)/(V^2 - 1).$$

Below we see $|A|$ plotted with respect to the speed V.

From the plot we see the maximum amplitude of oscillation $|A|$ occurs when the speed V is around 0.75; that, therefore, is the approximate speed that produces the most violent shaking of the vehicle. Note that you can find this maximum amplitude solving $dA/dV = 0$ for V and verifying that your answer is a local minimum. But then you would be required to solve a transcendental equation!