1. A competing species model. A stylized model of competing species with population densities
 \(x(t) \) and \(y(t) \) is given by
 \[
 \frac{dx}{dt} = x(1 - x - y), \\
 \frac{dy}{dt} = y \left(\frac{1}{2} - \frac{y}{4} - \frac{3x}{4} \right).
 \]
 First, find all four critical points. Then, by calculating the Jacobian matrix, classify each critical point.
 Next, use Matlab/Octave to plot the vector field for the system and superimpose several solutions to the
 equation. Label axes and indicate units.

2. Simplest predator-prey model.
 Note: in this problem, all the constants and variables are positive.
 Consider a prey species (rabbits) with population size \(x(t) \) and a predator species (foxes) with population
 size \(y(t) \). Suppose that in the absence of the predator, the prey population would experience exponential
 growth with rate parameter \(a \). In the absence of prey, the predator dies out (exponential decay with
 parameter \(d \)). Further suppose that the rate of predators catching prey is proportional to \(x(t)y(t) \), and
 this leads to a loss of prey (parameter \(\beta \)) and an increase in predators (parameter \(\gamma \)). These
 assumptions lead to probably the simplest form of a predator-prey system:
 \[
 \frac{dx}{dt} = ax - \beta xy, \\
 \frac{dy}{dt} = -dy + \gamma xy.
 \]
 a. Find the critical points of the system and describe them in biological terms.
 b. Calculate the Jacobian matrix and linearize around each critical point. Classify the critical points
 and sketch the vector field by hand.
 c. Suppose we modify the system to include harvesting of each species (e.g. the prey are sardines and
 the predators are tuna, both tasty fish) with harvesting (fishing) efforts \(E_x \) and \(E_y \):
 \[
 \frac{dx}{dt} = ax - \beta xy - E_x x, \\
 \frac{dy}{dt} = -cy + \gamma xy - E_y y.
 \]
 Describe how the equilibria of the system change when (i) only the prey is harvested; (ii) only the
 predator is harvested; (iii) both are harvested.
Let’s make the model of the preceding question more realistic. First, let’s replace the exponential growth of the prey with a logistic type growth, so

\[x'(t) = r(1 - \frac{x}{K})x \]

in the absence of predators. We see that all solutions with initial conditions \(x(0) > 0 \) tend to the equilibrium \(x = K \). We call \(K \) the carrying capacity of the prey habitat. Now let \(y \) be the population density of the predators and suppose that the predator population declines exponentially in the absence of prey, like \(y'(t) = -dy \).

The previous question’s model can be criticized because there is no limit to the rate of increase of the predator population or the rate of decline of the prey population. In reality, there is an upper limit on the rate at which prey can be caught and eaten by a predator. For this reason, ecological modellers are usually happier to use a “Holling Type II” function for the per-capita predator consumption rate of prey. This function has the form \(p(x) = \frac{m x}{a + x} \), reflecting the following features:

1. \(p(0) = 0 \) – if no prey is present, then no predation occurs.
2. \(p(x) \) is an increasing function of \(x \) – increasing prey population leads to an increase in prey consumption by predators.
3. \(p(x) \to m \) as \(x \to \infty \) – there is a maximum possible rate of prey consumption by predators even if prey are very abundant.

Putting this all together, we can write the whole improved model as:

\[
x' = r \left(1 - \frac{x}{K}\right)x - \frac{xy}{a + x},
\]

\[
y' = -dy + cm \frac{xy}{a + x}.
\]

Here \(c \) is a conversion factor between consumption of prey and ensuing increase in predators.

There are six parameters here. We will fix five numerical values and explore how changes in only one parameter, the habitat carrying capacity \(K \), affects the dynamics of the predator-prey system. Fix

\[r = m = 10, \quad a = 1, \quad d = 1, \quad c = \frac{1}{4}. \]

(a) Find all equilibrium points of the system. Note that the position of two of the three equilibrium points will depend on \(K \) and that we are only interested in equilibria in the non-negative (first) quadrant of the \(x - y \) plane since negative populations don’t make sense. State the condition on \(K \) for there to be three interesting equilibria in this quadrant.

(b) Find the Jacobian of the system and use this to analyze the local behaviour of the system near each equilibrium. You do not need to calculate this for any equilibrium point outside the non-negative quadrant. You should find that there are transitions in local behaviour of at least one equilibrium at the following values: \(K = 2/3, K = K^* \simeq 1.266, K = 7/3 \). Summarize your findings in a table like this one.

<table>
<thead>
<tr>
<th>Local behaviour near equilibria</th>
<th>((x_1, y_1))</th>
<th>((x_2, y_2))</th>
<th>((x_3, y_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (0 < K < \frac{2}{3})</td>
<td>e.g. saddle point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) (\frac{2}{3} < K < K^* \simeq 1.266)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) (K^* < K < \frac{7}{3})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) (K > \frac{7}{3})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fill in the locations of the equilibria \((x_i, y_i) \) and indicate their stability for each value of \(K \).

(c) Use Matlab/Octave to plot vector fields with a few solution curves for representative values of \(K \). Turn in one plot representing each case from (i)-(iv) in the table of part (c). Mark the equilibrium points on each plot. Label axes and indicate units.

(d) Complete the following table with your informed opinion about the long-term behaviour of the whole system for each range of \(K \).

<table>
<thead>
<tr>
<th>Overall behaviour of the system</th>
<th>(i) (0 < K < \frac{2}{3})</th>
<th>(ii) (\frac{2}{3} < K < K^* \simeq 1.266)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (0 < K < \frac{2}{3})</td>
<td>e.g. all solutions go to ((K, 0)) without oscillating</td>
<td></td>
</tr>
<tr>
<td>(ii) (\frac{2}{3} < K < K^* \simeq 1.266)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) (K^* < K < \frac{7}{3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) (K > \frac{7}{3})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(e) Finally, suppose you are managing a wildlife park. Your visitors come to see lions. The lions subsist on a diet of gazelles and you supply the gazelles with feed. According to the mathematical model, what will happen if you feed the gazelles too much? How might this impact your visitor experience? Explain how this could be called the “paradox of habitat enrichment”.

Submit the Matlab/Octave code you used in problems 1 and 3. Indicate clearly which part(s) of the code(s) correspond(s) to each question.