LIST OF TOPICS: MATH 215/255 JANUARY-APRIL 2017

Important Notes: References to sections of Lebl are provided for convenience but the material in Lebl will often need to be supplemented by reference to course notes, homework problems, homework solutions and other materials in order to achieve full understanding.

First Order Differential Equations

- Identify linear, nonlinear and separable equations, and understand order of an ODE (Lebl 0.2, 0.3, 1.3).
- Understand solutions in algebraic, integral and graphical forms (Lebl 1.1).
- Know and apply conditions that guarantee the existence and uniqueness of solutions for first order equations (Lebl 1.2).
- Understand slope fields for first order equations and be able to plot and interpret simple examples (Lebl 1.2).
- Understand and interpret plots of dy/dx vs y for autonomous equations (Lebl 1.6).
- Solve 1st order linear differential equations using an integrating factor. (Lebl 1.4)
- Solve separable 1st order equations via separation of variables (Lebl 1.3).
- Interpret solutions and link to properties of the original ODE (Examples in class and assignments).
- Applications, including: Newton’s law of cooling, evaporation problems, population growth, logistic equation, etc (Examples in class, assignments).
- Identify and solve exact equations including using simple integrating factors (Lebl 1.8).

Systems of Linear First Order Differential Equations

- Understand the following terms to classify systems of equations: linear, nonlinear, autonomous, forced, homogeneous.
- Convert a higher order linear ODE to a first order system of ODEs.
- Solve simple constant-coefficient systems using eigenvalue-eigenvector method including complex eigenvalue and repeated eigenvector (defective matrix) cases (Lebl 3.4, 3.7).
- Understand direction vector fields for first order equations and be able to plot and interpret for all 2x2 cases (Lebl 3.5).
- Find a fundamental matrix for a linear system of ODEs. Calculate the Wronskian. Be able to determine when a set of solutions is linearly dependent / linearly independent.
- Calculate matrix exponential and apply to solve systems (Lebl 3.8).
- Interpret solutions and link to properties of the original system, including applications (Examples in class and assignments).
Forced Systems of Linear Equations ($\vec{x}' = A\vec{x} + \vec{h}(t)$)

- Be able to solve simple 2x2 systems with forcing (Lebl 3.9), including selecting the best method to use.
- Use guess and check (undetermined coefficients), fundamental matrix or matrix exponential to solve forced problems.
- Interpret solutions and link to properties of the original system, including applications (Lebl 3.9., Examples in class).

Nonlinear Autonomous Systems of Differential Equations

- Identify nonlinear autonomous systems of differential equations (Lebl 8.1).
- Find critical points of such a system. Using the Jacobian matrix, describe the local behaviour of the solutions near critical points (Lebl 8.1).
- Interpret and plot qualitative solutions and link to properties of the original system (Lebl 8.2).
- Modelling applications including competing species, predator-prey and nonlinear pendulum. *You will not need to set up the equations.* (Lebl 8.3, additional notes, homework)

Second-order homogeneous constant-coefficient differential equations ($y'' + by' + cy = 0$)

- Identify and solve homogeneous second order equations and non-homogeneous (forced) second order equations by finding homogeneous and particular solutions (Lebl 2).
- Understand and apply the main results on existence and uniqueness of solutions for linear differential equations (Lebl 2.1, 2.3).
- Rewrite second order differential equations as 2x2 systems of first order equations (Class notes).
- Interpret and plot solutions for simple applications (e.g. spring-mass and linear pendulum, with or without frictional damping).
- Find particular solutions by Undetermined Coefficients method (aka guess-and-check) or by re-writing as a system of equations and using techniques for forced linear systems (Lebl 2.5, class notes).
- Interpret solutions for simple applications (e.g. spring-mass, LCR circuit, linear pendulum) in the presence or absence of damping and forcing terms. You will not have to derive the governing equations (Lebl 2, class notes).
- Identify and understand *resonance* and *beats* in sinusoidally-forced oscillatory systems with and without damping. Calculate and plot the amplitude of the steady solution (the *frequency response*) for such a system (Lebl 2.6).
- Make reasonably accurate plots of solutions (Lebl 2.4, 2.6 and class notes).
Numerical Methods

- Know Euler’s method and the Improved Euler method and apply to find numerical approximations to solutions of differential equations. (Lebl 1.7)

- Understand the estimated convergence of Euler’s method (global (accumulated) error proportional to the time step h, for small h) and the analogous result for Improved Euler. (Lebl 1.7 and class notes)

- Understand Matlab/Octave syntax as used on the homework problems (plotting direction fields for 1-D problems, Euler’s method, vector fields for 2-D problems, and using ode45 to generate numerical solutions) (assignments)

Laplace Transform for Differential Equations

- Define the Laplace transform and understand the basics of how to use it to solve differential equations (Lebl 6.1, 6.2).

- Calculate the Laplace transforms of simple functions by direct integration or by using a table of transforms. (Lebl 6.2, class notes)

- Solve simple Laplace transform problems using partial fractions, completing the square etc (Lebl 6.2, class notes).

- Solve ODEs with Laplace transform, including delta-function and step-function forcing (Lebl 6.4).

Note: a table of Laplace Transforms will be included on the final exam.
Study Resources

- We recommend that you study the webwork and homework questions, as well as the quizzes and midterm.
- Math department web site has many old final exams: https://www.math.ubc.ca/Ugrad/pastExams/index.shtml
- Most of the questions from 215+255 and 215 sections of that list are good for this time around. Listed below are some questions you can ignore from recent exams:
 - April 2016 exam: all questions are OK
 - April 2015 exam (listed separately under 215): all questions are OK
 - December 2014 exam: all questions are OK
 - April 2014 exam: all questions are OK
 - December 2013 exam: all questions are OK except 4c.
 - April 2013 exam: all questions are OK except 5. For question 7, convert to a 2nd order system and apply variation of parameters.
 - April 2012 exam: all questions are OK except 4 would be difficult.
 - December 2011 exam: all questions are OK (For IV(c), convert to 2nd order system and apply variation of parameters).
 - April 2011 exam: all questions are OK
 - December 2010 exam: all questions are OK
 - April 2010 exam: all questions are OK except 3b. For 3c, convert to 2nd order system.
 - December 2009 exam: all questions are OK except setting up the equations in 4.
 - April 2009 exam: all questions are OK
 - December 2007 exam: all questions are OK except 7a, 8b, 8e.
 - April 2007 exam: all questions are OK
- The MER wiki has detailed solutions for a few exams: http://wiki.ubc.ca/Science:Math_Exam_Resources/Courses/MATH215
- The UBC Math Club will sell you some exams and solutions for a small fee.