Math 190 Integrals And Riemann Sum Worksheet

Questions:

1. Explain why the expression

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

should give exactly the area under the curve $f(x)$.
2. Explain why the expression

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

should give an approximation to the integral $\int_{a}^{b} f(x) d x$.
3. Explain why (possibly using a picture or possibly referencing the Fundamental Theorem of Calculus)

- $\int_{a}^{a} f(x) d x=0$
- $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
- $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
are true.

4. Consider the function

$$
f(x)=x^{3}
$$

(a) Approximate the area under the curve $f(x)$ from $x=0$ to $x=3$ using Riemann Sums. Take $n=3$ and use left endpoints. Is your approximation and underestimate an overestimate or exactly equal to the true value.
(b) Approximate again the area under the curve $f(x)$ from $x=0$ to $x=3$ using Riemann Sums. Take again $n=3$ and this time use right endpoints. Is your approximation and underestimate an overestimate or exactly equal to the true value.
5. Consider the function

$$
g(x)=-x^{2}+3 x
$$

(a) Approximate the integral

$$
\int_{-1}^{2} g(x) d x
$$

using Riemann Sums with $n=3$ and left endpoints.
(b) Approximate the same integral but using $n=4$ and again left endpoints.
(c) Approximate the same integral but using $n=6$ and again left endpoints.
(d) Perform the integration and find the exact value. How do your approximations compare. Which is best? Why do you expect this?

