Math 190 Logarithm Note

Review the following Lab questions to make sure you are solving efficiently.

Questions:

1. Let's solve for x in the following:

$$
e^{2 \ln x}=7
$$

Now we could take the natural logarithm of both sides, solve for $\ln x$ and then take e to the power of both sides. That is

$$
\begin{aligned}
& \ln \left(e^{2 \ln x}\right)=\ln 7 \\
& 2 \ln x=\ln 7 \\
& \ln x=\frac{\ln 7}{2} \\
& e^{\ln x}=e^{\frac{\ln 7}{2}} \\
& x=e^{\frac{\ln 7}{2}} \\
& x=\left(e^{\ln 7}\right)^{1 / 2} \\
& x=\sqrt{7}
\end{aligned}
$$

Alternatively we can use exponent rules to write

$$
\begin{aligned}
& e^{2 \ln x}=7 \\
&\left(e^{\ln x}\right)^{2}=7 \\
& x^{2}=7 \\
& x=\sqrt{7} .
\end{aligned}
$$

2. Now let's solve

$$
\ln \left(3 e^{2 x}\right)=4
$$

Again we could take e to the power of both sides, divide both sides by 3 and then take \ln of both sides. That is

$$
\begin{array}{r}
e^{\ln \left(3 e^{2 x}\right)}=e^{4} \\
3 e^{2 x}=e^{4} \\
e^{2 x}=\frac{e^{4}}{3} \\
2 x=\ln \left(\frac{e^{4}}{3}\right) \\
2 x=\ln \left(e^{4}\right)-\ln (3) \\
x=\frac{4-\ln (3)}{2} .
\end{array}
$$

Alternatively we can use log rules to see

$$
\begin{array}{r}
\ln \left(3 e^{2 x}\right)=4 \\
\ln (3)+\ln \left(e^{2 x}\right)=4 \\
2 x=4-\ln (3) \\
x=\frac{4-\ln (3)}{2} .
\end{array}
$$

