## Math 190 Homework 11 (not to be handed in)

This homework is not for marks. It is intended to give practise with integration by parts and integral word problems.

## Questions:

1. Compute the following integrals

- $\int x e^{x} d x$
- $\int x \sin x d x$
- $\int x^{2} \cos x d x$
- $\int(x+3) e^{-x} d x$
- $\int x \sin (2 x) d x$
- $\int x \cos (3 x+\pi) d x$
- $\int x \ln x d x$
- $\int \frac{\ln x}{x^{2}} d x$
- $\int x \ln (1+x) d x$
- $\int \ln x d x$
- $\int(\ln x)^{2} d x$
- $\int e^{x} \cos x d x$
- $\int \cos x \ln (\sin x) d x$

2. Compute the following definite integrals

- $\int_{\ln 2}^{\ln 3} x e^{x} d x$
- $\int_{0}^{\pi / 2} x \sin x d x$
- $\int_{1}^{2} \frac{\ln x}{x^{2}} d x$

3. An oil storage tank ruptures at time $t=0$ and oil leaks from the tank at a rate of

$$
r(t)=100 e^{-0.01 t}
$$

liters per minute. How much oil leaks out during the first hour?
4. The velocity of a particle is given by

$$
v(t)=2 \cos (\pi t)+t
$$

in centimetres per second after $t$ seconds. If the particle starts 10 cm away from you, how far away is the particle after 1.5 seconds.
5. A ball is thrown upward with speed $2 \mathrm{~m} / \mathrm{s}$. Assume the acceleration due to gravity is constant. That is

$$
a(t)=-g
$$

in units of $\mathrm{m} / \mathrm{s}^{2}$. Find the time when the ball turns around and starts to fall back down (ie. the time when $v(t)=0)$.
6. You are driving on the highway with a velocity of $100 \mathrm{~km} / \mathrm{h}$. You see someone selling ice cream 100 m ahead and slam on the breaks. You accelerate at a constant (negative) rate of

$$
a(t)=-50000 \mathrm{~km} / \mathrm{h}^{2} .
$$

How long before you stop? Do you stop in time?

