1. Consider the number $240 / 7$. Let's try to figure out some information about this number without using long division.
(a) Demonstrate (with some multiplication) that $240 / 7$ is bigger than 30 .
(b) Demonstrate that $240 / 7$ is smaller than 40 .
(c) Show that $34<240 / 7<35$.
2. Let us now consider the number $\sqrt{7}$. We will try to compute without using a calculator.
(a) Find a number smaller than $\sqrt{7}$. Show how you know.
(b) Find a number larger than $\sqrt{7}$. Show how you know.
(c) Now that you have a range in which $\sqrt{7}$ lies, try to make this range smaller.
(d) Explain how you can continue this process to make your range containing $\sqrt{7}$ as small as you like. This method can be called the Bisection Method.
3. Now for the hard problem. Imagine we wanted to find the x-intercepts (zeros, roots) of the equation

$$
y=x^{3}-3 x^{2}+1
$$

That is, we want to solve

$$
x^{3}-3 x^{2}+1=0
$$

Feel free to plot a few (x, y) coordinates to get a sense of what this graph looks like. Feel free to use a calculator (but no graphing calculator).
(a) Find a point x whose corresponding y coordinate is positive.
(b) Find a point x whose corresponding y coordinate is negative.
(c) Now that your root is contained in an interval, improve your approximation using the Bisection Method.
(d) There are 3 roots total. Try to approximate them all. Check your answers with wolfram alpha. If you're into programming try to sketch out some pseudo-code to perform the algorithm. If you're not into programming write some English sentences to teach your friend how to perform the method.

