I. Curves

- Parametrization: \(\vec{r}(t) = \langle \ldots, \ldots, \ldots \rangle \) \(a \leq t \leq b \)

Diagram:

- Orientation = Direction, usually from \(\vec{r}(a) \) to \(\vec{r}(b) \)
- Geometry (curvature, ...)
- Motion (acceleration, ...)
- Integral over curves:

\[
\int_C \int f \, ds = \int_a^b f(\mathbf{r}(t)) \left| \mathbf{r}'(t) \right| \, dt
\]

in particular if \(f = 1 \): get arclength

\[
s(t) = \int_a^t \left| \mathbf{r}'(u) \right| \, du \quad \text{distance along curve from } a \text{ to } t.
\]

reparameterize by arclength:
reparameterize by arc length:

\[s = \text{something with } t \]

\[\begin{align*}
 t &= \text{something with } s \\
 \therefore \hat{r}(s) &= \hat{r}(t)
\end{align*} \]

\(-\) vector fields: work integrals

\[\oint_C \vec{F} \cdot d\vec{r} = \int_C \vec{F} \cdot \hat{T} \, ds \]

\[= \int_C P \, dx + Q \, dy \ (\ + \ R \, dz) \]
\[
\int_{t=a}^{b} F(\tilde{r}(t)) \cdot \tilde{r}'(t) \, dt
\]

\[
\int_{t=a}^{b} P(\tilde{r}(t)) x'(t) + Q(\tilde{r}(t)) y'(t) \, dt
\]

How to compute these?

- Integrals of functions:
 Use parameterization to compute directly.
Integrals of vector fields:

a) Is \(\vec{F} \) conservative?

If yes: find \(f \) with \(\nabla f = \vec{F} \)

and use the fundamental
then of line integrals.
or maybe use path independence.

b) Is \(C \) a closed curve (=loop)?

(check: \(\vec{r}(a) = \vec{r}(b) \))

Use Green's Theorem or Stoke's Thm.
Compute directly

Advanced tricks:

1) If C is not a closed curve, you might be able to add a curve (often the line from $\tilde{r}(b)$ to $\tilde{r}(a)$) to make it closed.
\(F \) not conservative, but close, can try to write \(F = F_1 + F_2 \)

\[\uparrow \text{very simple.} \]

How to check if \(F \) is conservative?

\[\exists f : \nabla f = F \]

\[Q_x - P_y = 0 \]

in 3D: \(F \) conservative \(\Rightarrow \) \(\text{curl } F = 0 \)
How to compute a potential?

want $\nabla \Phi = \vec{F} = \langle P, Q \rangle$

\[f_x = P \quad (\text{or } f_y = Q) \]

\[\int S \, dx \]

\[f(x, y) = \int P \, dx + g(y) \]

\[\int \frac{dy}{dy} \]
\[g'(y) = Q(x,y) \]
\[g'(y) = \ldots \leftarrow \text{only } y \text{'s here, otherwise } F \text{ is not conservative.} \]
\[\int S dy \]
\[g(y) = \ldots + C \]
\[\text{plug into } f(x,y) \text{ from above} \]
\[f(x,y) = \ldots \]

II. Surfaces

• Parametrizations

\[\vec{r}(u,v) = (\ldots, \ldots, \ldots) \quad u, v \in D \subseteq \mathbb{R}^2 \]
\[\vec{r} \]

7) Have to specify this (often a rectangle or disk)

\[\nabla \]

- Orientation = "up/down" = unit normal vector field on S.

\[\vec{N} = \pm \frac{\vec{r}_u \times \vec{r}_v}{|\vec{r}_u \times \vec{r}_v|} \]

- Induced orientation on \(\partial S \)
An induced orientation on ∂C:
\[\mathbf{N} \times \mathbf{T} \] points to the surface.

1. Integrals:
 - Functions
 \[
 \iint_S f \, dS = \iint_D f(\tilde{r}(u,v)) \cdot |\tilde{r}_u \times \tilde{r}_v| \, du \, dv
 \]
 - "Surface coords" (Calc 4)
 - Cartesian coords (Calc 3)
- vector fields (flux integrals)

\[\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{N} \, dS \]

\[= \iint_{D} \mathbf{F}(\hat{r}(u,v)) \cdot (\hat{r}_u \times \hat{r}_v) \, dudv \]

How to compute here?

- Integrals of functions
1) Integrals of functions
 Use parameterization to compute directly.

2) Integrals of vector fields
 a) Is $\mathbf{F} = \text{curl} \mathbf{G}$?
 → Apply Stoke's Theorem
 → or modify surface, but keep boundary the same
 b) Is S closed (boundary of solid region)?
b) Is \(S \) closed (= boundary of solid region)?

\[\Rightarrow \text{Apply divergence theorem.} \]

c) Compute directly

\[\Rightarrow \text{If you know } \vec{N} \text{ and } |\vec{r}_u \times \vec{r}_v| \text{ use} \]

\[\int_F \cdot \vec{N} \, dS = \int_S \vec{F}(\vec{r}(u,v)) \cdot \vec{N}(\vec{r}(u,v)) |\vec{r}_u \times \vec{r}_v| \, du \, dv \]

\[S \quad \text{D} \]

\[\Rightarrow \text{Otherwise use} \]

\[\int_D \vec{F}(\vec{r}(u,v)) \cdot (\vec{r}_u \times \vec{r}_v) \, du \, dv \]

\[D \]
Advanced trick: Add a surface to make it closed.